
OBJECT-ORDER RENDERING OF DISCRETE OBJECTS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

J. Edward Swan II, B.S., M.S.

* * * * *

The Ohio State University

1998

Dissertation Committee:

Dr. Roni Yagel, Adviser

Dr. Wayne Carlson

Dr. Kikuo Fujimura

Approved by

Adviser

Department of Computer &
Information Science

c Copyright by

J. Edward Swan II

1998

ABSTRACT

This dissertation gives accurate and efficient methods for the object-order rendering

of discrete objects. Discrete objects are typically represented with a volume raster and

rendered with a volume rendering algorithm. However, current object-order volume ren-

dering algorithms suffer from several problems. First, they require that the volume raster

be traversed in a strict visibility order, but existing visibility ordering methods do not al-

ways correctly order perspective projections of volume rasters. Second, both perspective

and orthographic renderings of volume rasters can contain aliasing artifacts, but current

object-order techniques have no method for addressing these artifacts. Third, computer-

generated animations suffer from temporal aliasing artifacts, which can be addressed by

adding motion blur. But currently the only motion-blur method for object-order tech-

niques is super-sampling, which is very expensive.

This dissertation presents three new techniques for the object-order rendering of dis-

crete objects which address these shortcomings. First, it gives and proves the correctness

of a new method for traversing a rectilinear volume raster in an order that guarantees

correct visibility under a perspective projection. Second, it introduces an innovative tech-

nique for eliminating the aliasing artifacts that occur when rendering a discrete object.

Third, it gives a new technique for adding motion blur to renderings of discrete objects

which is much more efficient than super-sampling. It uses the common object-order vol-

ume rendering method ofsplattingas a testbed for realizing these new techniques.

This dissertation gives examples of the new techniques applied to volume rendering

confocal data, texture-mapping discrete polygons, and rendering terrain datasets. In par-

ticular, the terrain representation is innovative compared to traditional object-order meth-

ods, which typically represent the terrain with triangular surface patches.

ii

A discrete representation has many advantages over more traditional surface-based

representations for many objects besides just terrains. These advantages make it likely that

discrete representations will be increasingly used in the coming years. To date, however,

the algorithms available for rendering discrete objects have been less mature than those

for rendering surface-based objects. The techniques presented in this dissertation promise

to help close this gap, and thus make the advantages of a discrete representation more

widely available.

iii

Dedicated to my family: John, Bonnie Sue, Suzanne,

Courtney, and Misty.

iv

ACKNOWLEDGMENTS

I thank my adviser Roni Yagel for many things: his collaboration and direction on the

dissertation research; his advice and direction on my program of study, my conference

and career activities, and scholarly publications; for finding the right balance between

pushing me to accomplish things and yet also giving me the freedom to work on other

projects; and for his conviction that I could actually complete a Ph.D. I also thank him

for his advice and direction during my job search and career development. Finally, I

acknowledge Roni’s most outstanding property: his boundless enthusiasm. After many of

our meetings I was so on fire with the exciting possibilities of our efforts that I wanted to

stay up all night working. This enthusiasm motivated me like no other force could have:

the work in this dissertation is definitely of a higher quality and a greater volume than

would otherwise have been possible. I hope to embody a similar infectious enthusiasm in

my future collaborations with others.

I also thank my other committee members, Wayne Carlson and Kikuo Fujimura, for

their advice and insights regarding this dissertation.

I acknowledge Don Stredney, who employed me for three years, gave me the oppor-

tunity to learn about research and grow as a researcher, and who taught me many things

about building and managing a research program.

I thank Gary Perlman for his early belief in my research potential, for giving me my

first research support, for his generosity, his strong sense of ethics, and for teaching me

not only about human-computer interaction but also about many other academic issues.

I thank Wayne Carlson for the wonderful opportunity to work and live at ACCAD for

the past five years. There could not be a more creative or pleasurable place to think, collab-

orate, and work. I also thank Wayne for his advice on many issues, and his collaboration

on several publications.

v

I acknowledge Wayne as well as the students and staff of ACCAD for the excellent

camaraderie which I have shared in for so many years. At the risk of leaving someone out,

let me mention the staff: Eric Alexander, Pete Carswell, Chuck Csuri, Viki Dennis, Carol

Gigliotti, Elaine Hamilton, Barb Helfer, Midori Kitagawa-DeLeon, Kris Laszlo, Ruedy

Leeman, Matt Lewis, Steve May, Bob McCarthy, Phil Ritzenthaler, Dennis Sessanna,

and Stephen Spencer; my fellow CIS students at ACCAD: Kirk Bowers, Kim Chula,

Mark Fontana, Meg Geroch, Leslie Hiemenz, Scott King, Nathan Loofbourrow, Dave

Reed, Kevin Rodgers, Ferdi Scheepers, Casey (Kevin) Simon, Ed Sindelar, Karan Singh,

Sara Susskind, Jim Vaigl, and Lawson Wade; and the ACCAD art students: Gigi Alandt,

Paul Badger, Bren Bataclan, Leslie Bishko, Beth Blostein, Agata Bolska , Yina Chang,

Alison Colman, Erika Galvao, Kevin Geiger, Pete Hriso, Jean Ippolito, Zil Lilas, Neil

McDonald, Terry Monnett, Flip Phillips, Tonya Ramsey, Wen Hwa (Moon) Seun, Traci

Temple, Nathania Vishnevsky, Rina Wayanti, and Hisayo Yoshida.

I also acknowledge my fellow graduate students in the volume graphics research

group, and thank them for many years of interesting discussions, collaborations, semi-

nars, and fun parties: Yair Kurzion, Asish Law, Raghu Machiraju, Torsten M¨oller, Klaus

Mueller, Alec Rebello, Dave Reed, Naeem Shareef, and Ph-Wen Shih; and our illustrious

leader, Roni Yagel. I also acknowledge Roger Crawfis, the new professor in the group —

may his tenure here be long and fruitful!

I acknowledge the good fellowship of the CIS students who went through the degree

program with me, in particular John Boyd, Paolo Bucci, Kevin Carpenter, Donglai Dai,

Steve Edwards, Wayne Heym, Manas Mandal, Bill Pippin, Srini Raghavan, Kevin Rogers,

Lynn Snider, and Pete Ware. I also acknowledge the following CIS staff members who

provided excellent help and fellowship throughout my years here: Tom Fletcher, Jim Giu-

liani, James Jobe, George Jones, Marty Marlatt, Elizabeth O’Neill, and Deanna Tavenner.

Finally the ever-competent Eleanor Quinlan deserves special mention: she helped me de-

cide to attend OSU, she provided lots of help as we moved to Columbus, she oversaw all

my teaching, and she has always been available to listen to my concerns and give good

advice.

vi

I acknowledge the many great friends we have made in Columbus, and thank them for

many fun evenings of dining, music, entertainment, and just visiting: Harold & Paulene,

Lynn & John, Ferdi & Ron´el, Jim & Kris, Frank & Kathi, Chris & Monica, Tom & Sara,

and Don & Holly.

I acknowledge the fellowship of Saint Mark’s Episcopal Church and my rectors Mi-

chael Jupin and Melody Williams. I especially thank Saint Mark’s Choir for six happy

years of companionship and music. I acknowledge Gary Garber and Michael Murry for

both spiritual and musical leadership, and for the inspiring example of lives spent in Music

and Faith.

I acknowledge the Ohio State University Jazz Department, and especially Tom Carroll

and Jeff Ciampa, for teaching me how to play jazz. I thank Don Chilcote and Bill Chap-

nick for theSynergetic Traneadventure and my first real jazz gigs. And I thank Don for

the adventurous trip to the Windy City where we lived and breathed jazz for a week — a

journey I hope to make again one day.

I thank my parents, John Edward Swan and Bonnie Sue Swan, for a wonderful and

happy upbringing that stressed all the really important things in life; for the continuing

example of how to live with grace, dignity, and happiness; and for always giving me

unconditional love and support. I thank my sister Suzanne for her unconditional love and

support, and for sharing the graduate school experience with me. I also thank her husband

Bret Kloos for his fellowship and all the good times we have shared.

I thank my in-laws Kenneth Jones and Sandra Jones for letting me take Courtney so

far away for so many years, and for always supporting us. I also thank my sister-in-law

Kendra for the many years we have known each other and the many good times we have

shared.

I thank my wonderful and sweet wife, Courtney, for following me up to Ohio and

helping me through this not-always-pleasant journey in so many ways. I acknowledge her

as the main reason I am graduating now and not God-only-knows-how-many years from

now. I thank her for the deep and unconditional love that we share.

vii

I thank Misty for her sweet and steady little spirit, for her many kisses, and for always

being my first child. I acknowledge her quiet companionship during the many long and

lonely afternoons that I sat working while she quietly slept nearby.

Last but certainly not least, I acknowledge God and Jesus for the strength to actually

finish this endeavor. I especially thank Him for the many mornings when hopelessness

set in, and I felt despair and anxiety abouteverbeing able to finish, and yet after a prayer

I somehow received the strength to go put in yet another day of labor. This honorable

accomplishment is the sum of all those mornings.

“The onlygooddissertation is adonedissertation.”
— Dr. Allen McDonald, January 6, 1997

viii

VITA

January 13, 1965. Born — Bloomington, Indiana

1986–1987. Software Engineer (Co-op Position)
BellSouth Services
Birmingham, Alabama

1989 . B.S. Computer Science and Engineering
Auburn University,
Auburn, Alabama

1988–1990. Software Engineer
Optimization Technology Incorporated
Auburn, Alabama

1992 . M.S. Computer and Information Science
The Ohio State University,
Columbus, Ohio

1990–1996. Graduate Research and Teaching
Associate, The Ohio State University
Columbus, Ohio

PUBLICATIONS

Don Stredney; Wayne Carlson; J. Edward Swan II; Beth Blostein, “The Determination
of Environmental Accessibility and ADA Compliance through Virtual Wheelchair Sim-
ulation”, PRESENCE: Teleoperators and Virtual Environments; First Special Issue on
The Application of Virtual Environments to Architecture, Building, and Large Structure
Design, Volume 4, Number 3, MIT Press: Summer 1995.

Shu-Chieh Wu, Jack W. Smith, J. Edward Swan II, “Pilot Study on the Effects of a Com-
puter-Based Medical Image System”.Proceedings of the 1996 AMIA (American Medi-
cal Informatics Association) Annual Fall Symposium, October 26–30, 1996, Washington,
D.C.

ix

Raghu Machiraju, Edward Swan, Roni Yagel, “Spatial Domain Characterization and Con-
trol of Reconstruction Errors”.Proceedings of the EuroGraphics Rendering Workshop
’95, June 12–14, 1995, Dublin, Ireland.

Perlman, Gary & Swan, J. Edward II, “Relative Effects of Color-, Texture-, and Density-
Coding on Visual Search Performance and Subjective Preference”,Proceedings of the
38th Annual Meeting of the Human Factors and Ergonomics Society, Santa Monica, Cal-
ifornia: HFES, October 1994, pages 343–347.

Swan, J.Edward II; Stredney, Don; Carlson, Wayne; & Blostein, Beth, “The Determi-
nation of Wheelchair User Proficiency and Environmental Accessibility Through Virtual
Simulation”,Proceedings of the Second Annual International Conference: “Virtual Re-
ality and Persons with Disabilities”, California State University, Northridge, California:
CENTER ON DISABILITIES, June 1994, pages 156–161.

Perlman, Gary & Swan, J. Edward II, “Color versus Texture Coding to Improve Visual
Search Performance”,Proceedings of the 37th Annual Meeting of the Human Factors
and Ergonomics Society, Santa Monica, California: HFES, October 1993, pages 235–
239. Also appears in G. Perlman, G. K. Green, & M. S. Wogalter (Eds.),Human Factors
Perspectives on Human-Computer Interaction: Selections from the Human Factors and
Ergonomics Society Annual Meetings 1983–1994, Santa Monica, CA: HFES, 1995.

Raghu Machiraju, Edward Swan, Roni Yagel, “Error-Bounded and Adaptive Reconstruc-
tion”, Newsletter of SPIE’s International Technical Working Group on Electronic Imag-
ing, Volume 4, Issue 2, 1995.

Gregory J. Wiet, M.S., M.D.; David E. Schuller, M.D.; Joseph Goodman, M.D.; Don
Stredney; Charles F. Bender, Ph.D.; Roni Yagel, Ph.D.; J. Edward Swan II, M.S.; Petra
Schmallbrock Ph.D.; “Virtual Simulations of Brain and Cranial Base Tumors”,Proceed-
ings of the 98th Annual Meeting of the American Academy of Otolaryngology—Head and
Neck Surgery, San Diego, California, September 1994.

Stredney, D., McDonald, J., Wiet, G., Yagel, R., Sindelar, E., & Swan, J.E., “Virtual Sim-
ulations Through High Performance Computing”,Proceedings of Medicine Meets Virtual
Reality II, San Diego, California: University of California, San Diego, January 27–30,
1994.

x

FIELDS OF STUDY

Major Field: Computer and Information Science

Studies in:

Computer Graphics Dr. Roni Yagel
Human-Computer Interaction Dr. Gary Perlman
Software Engineering Dr. Bruce Weide

xi

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . ix

List of Tables . xv

List of Figures . xvi

Chapters:

1. INTRODUCTION . 1

1.1 Volume Rendering Literature Review 2
1.1.1 Surface Fitting Algorithms 2
1.1.2 Volume Rendering Algorithms 3

1.2 The Splatting Algorithm 7
1.2.1 The Splatting Pipeline. 7
1.2.2 Inherent Problems and Solutions 12
1.2.3 Reconstruction Kernel. 26
1.2.4 Advantages and Disadvantages of Splatting. 26
1.2.5 Splatting Implementation 29

2. A VISIBILITY ORDERING ALGORITHM FOR RECTILINEAR GRIDS . 30

2.1 Introduction 30
2.2 Previous Work . 31

2.2.1 Regular Grids 31

xii

2.2.2 Correct Regular Grid Perspective Ordering Methods 35
2.2.3 Non-Regular Grids . .. 35

2.3 The Perspective Back-to-Front Visibility Ordering. 36
2.3.1 Definitions and Assumptions 37
2.3.2 1D Visibility Ordering. 42
2.3.3 2D Visibility Ordering. 47
2.3.4 3D Visibility Ordering. 55
2.3.5 Discussion 69

2.4 Results . 69
2.5 Summary and Future Work . 74

3. AN ANTI-ALIASING TECHNIQUE FOR SPLATTING 75

3.1 Introduction 75
3.2 Previous Work . 75

3.2.1 Analytic Techniques .. 76
3.2.2 Point-Sampling Techniques 77

3.3 The Anti-Aliasing Technique . 80
3.3.1 The Different Spaces .. 81
3.3.2 The Need for Anti-Aliasing in Volume Rendering 82
3.3.3 Necessary Conditions to Avoid Aliasing 85
3.3.4 An Anti-Aliasing Method for Splatting 86
3.3.5 Justification for the Method 90

3.4 Results . 91
3.5 Summary and Future Work . 93

4. A MOTION BLUR TECHNIQUE FOR OBJECT-ORDER RENDERING OF
DISCRETE OBJECTS . 100

4.1 Introduction 100
4.2 Previous Work . 101

4.2.1 Analytic Methods . .. 101
4.2.2 Discrete Methods . .. 104

4.3 The Splatting-Based Motion Blur Algorithm 105
4.3.1 Motivation 105
4.3.2 Method .. 107

4.4 Results and Discussion . 110
4.5 Summary and Future Work . 112

5. APPLICATIONS TO TERRAIN RENDERING 114

5.1 Introduction 114

xiii

5.2 Previous Work . 115
5.2.1 Ray Casting 115
5.2.2 Shear-Warp 116
5.2.3 Object Order 116

5.3 Terrain Rendering Examples . 117

6. CONTRIBUTIONS AND CONCLUSIONS 125

Bibliography . 127

xiv

LIST OF TABLES

Table Page

2.1 The relationship betweenvp and a 1D grid. 44

2.2 The relationship betweenvp and a 2D grid. 48

2.3 The relationship betweenvp and a 3D grid. 58

xv

LIST OF FIGURES

Figure Page

1.1 Volume ray casting. 4

1.2 Volume rendering by affine transformation. 5

1.3 Object-order volume rendering algorithms. 6

1.4 Data flow diagram of splatting (from [99]). 8

1.5 A 3D rotationally symmetric filter kernel is integrated to produce a 2D
filter kernel. 10

1.6 The splatting process: reconstruction and resampling with the 2D filter
kernel. 11

1.7 Thesplat integration problem: each splat kernel is integrated, not com-
posited, along the viewing direction. 13

1.8 The overlapping splat problem. 14

1.9 Thesplat ordering problem: a small change in the viewing parameters
causes the traversal ordering to change. 15

1.10 Summing the splats in avolumetric summation bufferbefore the visibil-
ity calculation. 16

1.11 Summing the splats in a sheet summation buffer before the visibility cal-
culation. 17

1.12 The sheet summation buffer suffers from the splat integration problem,
and the splat overlap problem in the screen-spacez-dimension. 18

xvi

1.13 An animation illustrating the overlapping splats problem. 20

1.14 The same animation as Figure 1.13, rendered with composited attenuated
splats. 21

1.15 The same animation as Figure 1.13, rendered with a sheet summation buffer. 23

1.16 A sheet summation buffer showing thesplat ordering problem(see Fig-
ure 1.9). 24

1.17 The sheet summation buffer does not calculate illumination properly for
perspective projections. 25

2.1 Pseudocode for the back-to-front visibility ordering [32]. 32

2.2 A 2D example of the BTF visibility ordering.. 32

2.3 Pseudocode for the Westover back-to-front visibility ordering [98, 99]. . . 33

2.4 Pseudocode for the V-BUFFER visibility ordering [94]. 34

2.5 The V-BUFFER visibility ordering within each slice.. 34

2.6 The obstructs relation. 38

2.7 An example of three polygons which do not have a visibility ordering. . . 39

2.8 The planeP divides the space into two half-spacesP+ andP�. 41

2.9 1D, 2D, and 3D grids. 43

2.10 A 1D grid showing the location of the view pointvp and point objects
divided into the setsGL andGR. 44

2.11 A 1D grid with dividing planes added. 45

2.12 The right-hand points in the setGR. 46

2.13 vpu either falls beforep1 or afterpn. 46

xvii

2.14 Naming conventions for a 2D grid. 49

2.15 Grid layout for proof of 2D visibility ordering.. 50

2.16 The visibility ordering for the setGLD. 52

2.17 The viewpoint is beyond the “L” edge of the grid. 54

2.18 The viewpoint is beyond the “LD” corner of the grid.. 55

2.19 Naming conventions for a 3D grid. 57

2.20 Grid layout for proof of 3D visibility ordering.. 61

2.21 The visibility ordering for the setGLDF. 64

2.22 The viewpoint is beyond the “F” face of the 3D grid.. 65

2.23 The viewpoint is beyond the “RF” edge of the 3D grid. 67

2.24 The viewpoint is beyond the “RDF” corner of the 3D grid. 68

2.25 A cube rendered with the BTF visibility ordering. 71

2.26 A cube rendered with the WBTF visibility ordering. 72

2.27 A cube rendered with the PBTF visibility ordering. 73

3.1 Specification of the viewing frustum. 82

3.2 Resampling the volume raster onto the integration grid. 84

3.3 A comparison of the standard splatting method with the anti-aliased method. 88

3.4 The geometry for scaling splats drawn afterk. 89

3.5 Calculating the integration grid sampling frequency. 90

3.6 Rendered image of a plane with a checkerboard pattern. 92

3.7 Rendered image of a terrain dataset. 94

xviii

3.8 Rendered image of a scientific dataset. 95

3.9 Traditional texture mapping, showing the pixel preimage for direct con-
volution, a summed area table, and mip-mapping. 97

3.10 Traditional texture mapping, showing the preimages of two adjacent pixels. 98

3.11 Texture mapping with the new method discussed in this chapter. 99

4.1 Motion blur calculated with the accumulation buffer technique. 106

4.2 Drawing a motion-blurred splat from positionti�1 to ti. 107

4.3 The construction of a non-blurred and a motion-blurred splat. 108

4.4 The motion-blurred splat is drawn perpendicular to the ray from the eye
point to positionti. 109

4.5 One frame from an animation of a rotating box demonstrating the new
motion blur method.. 111

5.1 Four frames from a terrain animation with visibility problems denoted by
arrows. 118

5.2 The same animation as Figure 5.1, using the Perspective Back-to-Front
visibility ordering from Chapter 2. 119

5.3 The same animation as Figure 5.1, using the Perspective Back-to-Front
visibility ordering from Chapter 2 and the anti-aliasing technique from
Chapter 3. 121

5.4 Four frames from a terrain animation rendered with an orthographic pro-
jection. 122

5.5 The same animation as Figure 5.4, using the motion-blur technique of
Chapter 4. 123

5.6 The same animation as Figure 5.4, using theaccumulation buffermotion
blur technique. 124

xix

CHAPTER 1

INTRODUCTION

For the past decade volume rendering has emerged as an important technology in the

fields of computer graphics and scientific visualization. Initially volume rendering was

primarily applied to the application domains of biomedical visualization and scientific vi-

sualization (especially computational fluid dynamics), and these remain important appli-

cations. However, volume rendering is now being applied to a broader spectrum of areas

in computer graphics, including the modeling, rendering, and animation of objects which

have formally only been represented by surface-based primitives. Despite this emerging

importance, currently volume rendering as a science is not as mature as surface-based

computer graphics. There is still a need for basic research in volume rendering methods

and theory.

As is discussed in more detail later in this chapter,splatting is a popular approach to

volume rendering. The work reported in this dissertation extends the splatting method in

four main ways:

� it shows how to correctly render a volume when using a perspective projection with

splatting (Chapter 2),

� it gives an anti-aliasing technique for splatting which is particularly useful when

using a perspective projection (Chapter 3),

� it introduces a new method for adding motion blur to splatting, (Chapter 4), and

� it applies splatting to the new application domain of terrain rendering (Chapter 5).

1

Although in this dissertation each of these new techniques is given in the context of splat-

ting and volume rendering, they also have applications that go beyond splatting and vol-

ume rendering. These extensions are mentioned, but the main focus of this work is the

splatting algorithm.

The rest of this chapter is organized as follows. First, Section 1.1 gives a general

review of the volume rendering literature, and provides a classification of the current

approaches. This places the splatting approach in the broad context of the field. Then

Section 1.2 describes the splatting algorithm in some detail. This section also discusses the

particular splatting implementation which serves as the testbed for the extensions which

are discussed in the rest of this dissertation.

1.1 Volume Rendering Literature Review

In volume rendering, we wish to visualize or render avolume data set. A volume data set

is usually a 3-dimensionalscalar field, where each 3D point in the field yields the field

strength, represented by a single scalar value. Usually the field is available to us in the

form of a rectilinear grid of samples. We sometimes refer to this sample grid as avolume

raster.

There are a number of algorithms for rendering volume data sets. At the coarsest level,

the algorithms can be placed into two categories based on the portion of the volume raster

set which they render. This categorization separates them intosurface fitting algorithms

andvolume rendering algorithms.

1.1.1 Surface Fitting Algorithms

Surface fitting algorithms first fit geometric primitives to values in the data, and then

render these primitives. The data values are usually chosen from aniso-surface, which

is the set of locations in the data where the scalar field equals some value. In typical

data sets from medical or scientific visualization applications, the iso-surface forms a

connected surface, such as the air/skin or brain/bone boundary in a CT dataset. Surface

2

fitting algorithms locate the desired iso-surface and model it with geometric primitives

such as triangles, and then render it using standard polygon rendering techniques.

Surface fitting techniques can be classified according to the type of geometric primitive

they use. In thecuberille method (Herman and Liu [45]; Chen, Herman, Reynolds, and

Udupa [11]), voxels which intersect the iso-surface of interest are detected; the voxel faces

are rendered as a connected mesh of small squares. A mesh of triangles that approximates

the iso-surface can be generated by connecting a stack of planar contours (Fuchs, Kedem,

and Uselton [33]), or by finding a linear approximation to the surface inside each voxel

(Lorensen and Cline’smarching cubestechnique [60]). In thedividing cubesmethod

(Cline, Lorensen, Ludke, and Teeter [12]) a mesh of point primitives is generated from

the iso-surface.

1.1.2 Volume Rendering Algorithms

Volume rendering algorithms render every voxel in the volume raster directly, without

conversion to geometric primitives. They usually include an illumination model which

supports semi-transparent voxels; this allows renderings where every voxel in the volume

is (potentially) visible. Volume rendering algorithms can be classified according to how

the image is generated. This classification groups the algorithms intoray casting, shear-

warp, andobject ordermethods.

Ray Casting: These algorithms, diagramed in Figure 1.1, cast a ray from each pixel into

the volume, sample the volume at regular intervals along the ray, and then composite these

samples to produce the final color seen at the pixel. This is animage-ordercomputation:

the resulting image is calculated pixel by pixel. They are also calledvolume ray casting

techniques. They are similar to the common polygon- or surface-rendering procedure

of recursive ray tracing[30, 96, 36], with the difference that secondary reflection and

refraction rays are not spawned.

The first volume ray-casting algorithm is described by Tuy and Tuy [93]. This method

only detects the first intersection of the ray with the data set (a binary classification), and

so can only show the data’s outer surface. It uses a simple depth cueing illumination

3

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

volume

image plane

Figure 1.1: Volume ray casting.

model. Another early method from the same year is by Kajiya and Von Herzen [50],

which gives a ray-tracing method for volume densities in the context of rendering clouds

and other particle systems.

The next several techniques presented here trace rays through the entire volume and

sample the volume raster at regular intervals along the ray. The Sabella [87] method

introduces thesingle-scattering shading model, a commonly used volume-rendering il-

lumination model. The volume is considered to be composed of many small luminescent

particles. The illumination emitted by each particle may scatter off of a neighboring parti-

cle, but only one level of this scattering is modeled (otherwise the illumination calculation

becomes very complex). Upson and Keeler [94] assume that the volume raster is a set of

samples of a trilinearly-varying scalar field. They also introduce the idea oftransfer

functions, where each visible data parameter (such as the red, blue, green, and opac-

ity channels) is an arbitrary function of the scalar data field. By manipulating the transfer

functions it is possible to generate many different images of the same data set, and thereby

gain a deeper understanding of the underlying data. The Levoy [58] ray-casting method

combines many features of the above techniques. In addition, it gives non-binary methods

for displaying surfaces from the scalar field.

4

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

(rotated and scaled)
volume

(a) (b)

image planeimage plane

volume

Figure 1.2: Volume rendering by affine transformation. (a) The image plane and volume
before transformation. (b) After the volume is rotated and scaled, the image plane samples
the volume.

Shear-Warp: These algorithms (Figure 1.2) first rotate and scale the volume raster to

align with the image pixels (an object-order computation), and then sample the volume

raster through each pixel (an image-order computation). They are also calledaffine-

transformation algorithms, because the initial volume transformation is affine. They

factor the viewing transformation into a sequence of 1D shears possibly separated by

transpositions of the volume data. The result is a new volume raster which has been

transformed so that rays projected from the image pixels regularly sample the volume in

depth-ordered beams.

The technique of Drebin, Carpenter, and Hanrahan [26] composites the transformed

volume data sheet-by-sheet to form the final image, where each sheet is parallel to the

image plane. Hanrahan [40] gives a technique for breaking any affine volume transforma-

tion into at most three 1D shearing passes. Because this technique only works for affine

transformations, it can be used for orthographic but not perspective projections. Lacroute

and Levoy [54] describe a similar approach with the exception that a sheared 2D image

is first produced from the sheared volume data, and then 2D resampled to form the final

5

volume

image plane

Figure 1.3: Object-order volume rendering algorithms.

image. Because a sheared image is created, the technique only requires one shearing pass

through the volume data.

Object Order: These algorithms (Figure 1.3) project each voxel to the screen and com-

posite it into an accumulating image. They visit the voxels in an order which ensures

that visibility and occlusion between voxels is properly handled. This is an object-order

computation: the resulting image is built up voxel-by-voxel. The object order volume ren-

dering algorithms can be broken into two sub-classes depending on the type of primitive

which is drawn for each voxel. This classification groups them intosplattingandscanline

cell drawingalgorithms.

Thesplattingalgorithm, given by Westover [97, 98, 99] and extended by Crawfis and

Max [21], convolves each voxel with a spherically symmetric reconstruction kernel. Laur

and Hanrahan [55] extend the technique to render a hierarchical volume grid stored as an

octree. Mao [63] uses spherical and ellipsoidal splats to render curvilinear and irregular

grids. The splatting algorithm forms the basis of the work presented in this dissertation; it

is described in detail in Section 1.2 below.

Scanline cell drawingalgorithms treat each voxel as a hexahedron or tetrahedron.

They project each voxel to the view plane, decompose the voxel into a set of overlapping

6

polygons, and then scan-convert the polygons using standard incremental polygon ren-

dering techniques. This last step is typically performed by polygon rendering hardware.

The result is that the original voxel is 3D rasterized in a manner which is analogous to 2D

rasterizing a polygon.

An early method by Frieder et al. [32] renders opaque squares; it uses binary classi-

fication and the cuberille data model [45, 11]. Upson and Keeler [94] render the voxels

scanline-by-scanline. Their method creates a polygon perpendicular to the image plane;

they split the resulting scanline into spans which properly integrate the voxel in depth.

Wilhelms and Van Gelder [101] give an efficient table-driven technique which breaks all

the possible projections of a hexahedral cell into sets of overlapping quadrilaterals and tri-

angles. They also discuss the repercussions of scan-line interpolation on depth integration

of illumination models.

The algorithms listed so far require rectilinear volumes. The same technique has been

applied to irregular volumes, where voxels are typically modeled by tetrahedra, as op-

posed to hexahedra for regular volumes. Max, Hanrahan and Crawfis [65] give a technique

for the proper incremental computation of a single-scattering shading model. Shirley and

Tuchman [89] give a table-driven technique similar to Wilhelms and Van Gelder [101],

which breaks all the possible projections of a tetrahedral cell into sets of overlapping

triangles.

1.2 The Splatting Algorithm

The work in this dissertation is demonstrated in the context of the splatting algorithm; this

algorithm is now described in some detail. This description follows the implementation

by Westover [97, 98, 99].

1.2.1 The Splatting Pipeline

In this section splatting is described in the context of the technique’s rendering pipe-

line. This description follows Westover’s dissertation [99] with some modifications. The

pipeline is given in Figure 1.4. This shows how the volume (the input data structure) is

7

ED

C

A

B

ImageIV. Compositing

Volume I. Transformation

II. Shading

III. Splatting

Figure 1.4: Data flow diagram of splatting (from [99]).

transformed through a 4-step rendering process to produce the final image (the output data

structure).

Volume. The splatting algorithm starts with an input volume. The algorithm traverses

the volume in either aback-to-frontor front-to-backorder; this ordering determines how

the final composition is done in stage IV. Traversal orderings for volumetric grids are

discussed in Chapter 2 of this dissertation. The output of the volume is a stream of voxels,

A:
[d; density value
m; gradient strength
(�; �); gradient direction
(i; j; k)] volume grid coordinates

(1.1)

Transformation (Stage I). The first stage in the pipeline transforms the voxels from vol-

ume grid coordinates(i; j; k) into image-space screen coordinates(x; y; z), where(x; y)

is the voxel’s screen space location andz is the depth. This transformation is efficiently

performed with a3D digital differential analyzeralgorithm, which is similar to a fast

raster line-drawing algorithm [30, page 74]. The first voxel in the volume is transformed

by the transformation matrix using a full matrix multiplication, but all subsequent voxels

are transformed by adding at most three delta values to the previously transformed value.

This method is more clearly described by Machiraju and Yagel [61].

8

The output of stage I are image-space voxels,B:

[d; density value
m; gradient strength
(�; �); gradient direction
(x; y; z)] image-space coordinates

(1.2)

Shading (Stage II). The next stage shades the voxels using some shading model. West-

over uses a table-driven shading process ([99], page 56) that allows a range of shading

models to be used, such as Phong shading or single-scattering illumination. The opacity

calculations can either emphasize surfaces in a manner similar to Levoy [58], or interior

structures in a manner similar to Sabella [87].

The output of stage II are shaded image-space voxels,C:

[(r; g; b); color
�; opacity
(x; y; z)] image-space coordinates

(1.3)

Splatting (Stage III). This stage reconstructs the shaded image-space voxels by convolv-

ing them with a filter, and then resamples the filter at the pixels within the filter’s extent.

The reconstruction occurs in 3D image space, which necessitates a 3D filter kernel. How-

ever, the filter is resampled by image pixels, which happen to lie in a 2D plane. Therefore,

it is possible to use a 2D filter kernel instead of a 3D filter kernel. As shown in Figure 1.5,

Westover starts with a 3D rotationally symmetric filter kernel [99, page 62]. He integrates

this kernel along one dimension to produce a 2D filter kernel. Westover uses a Gaussian

kernel because it has convenient mathematical properties: it is rotationally symmetric, it

is separable, and the integration of a multi-dimensional Gaussian along an axis is another

Gaussian of one less dimension.

The splatting process is shown in Figure 1.6. The center of the splat kernel is placed

on the view plane at the image space coordinates(x; y) of the image-space voxelC. Each

pixel in the filter’s footprint receivesC ’s color and opacity, weighed by the filter’s value

at the pixel’s location. In equation form

p� = s�w�; (1.4)

9

3D filter kernel

2D filter kernel

integrate along
one dimension

Figure 1.5: A 3D rotationally symmetric filter kernel is integrated to produce a 2D filter
kernel.

wherep is the pixel value,s is the splat value,w is the height of the filter above the pixel,

and� is one of the color channelsr; g; b or �.

The output of this stage are tuplesD for all the pixels that lie in the splat kernel’s

footprint:
[(r; g; b); color
�; opacity
(x0; y0)] integer pixel coordinates

(1.5)

Compositing (Stage IV). This stage composites each pixelD from the splatting stage

into the final image; each image pixelE has the same form asD given in Equation 1.5

above. As shown in Figure 1.4, the compositing stage accesses image pixels, composites

them with the incoming splat pixels, and then returns the pixels to the image.

The compositing stage performs two types of compositing, depending on how the

volume is traversed. If it is traversed in a back-to-front order, where the voxels are visited

in order of decreasing distance to the view plane, then the pixels from stage III occlude

those which have already been composited into the image. In this case the pixels are

composited using Porter and Duff’sover operator [81]:

D overE �

(
E� = D� + E�(1�D�)
E� = D� + E�(1�D�)

(1.6)

10

x filter extent

kernel
filter

y filter extent

filter footprint

image-space splat
coordinates(x; y)

pixels

Figure 1.6: The splatting process: reconstruction and resampling with the 2D filter kernel.

where� is a color channelr; g; or b. Here the new value of the image pixelE is shown to

the left of the equal sign, in terms of the old value shown to the right.

If the volume is traversed in a front-to-back order, where the voxels are visited in order

of increasing distance from the view plane, then pixels already in the image occlude pixels

coming from stage III. In this case the pixels are composited using theunder operator,

which is the inverse of theover operator:

D under E � E overD �

(
E� = E� +D�(1� E�)
E� = E� +D�(1� E�)

: (1.7)

Image. The splatting algorithm ends with the rendered image. Westover’s implementa-

tion allows the user to view partially rendered images as the rendering proceeds [99, page

75]. If the splatting order is back-to-front, then features towards the back of the volume

are rendered first and then dissappear as they are overwritten by features towards the front

of the volume. If the splatting order is front-to-back, then once the features towards the

front of the volume are rendered the image does not change very much.

11

1.2.2 Inherent Problems and Solutions

The splatting algorithm as outlined in Section 1.2.1 above is Westover’s basic implemen-

tation, as presented in his first publication [97]. This implementation of splatting has

several inherent problems, which are described in this section, along with some solutions

that Westover proposed in his subsequent publications [98, 99].

1.2.2.1 Composition and Integration Problems

All volume rendering algorithms require both aresamplingand avisibility operation:

the 3D volume raster is resampled into a new grid (the image pixels), and a visibility

operation is applied in the screen-spacez-direction to calculate the correct visibility. The

visibility operation is usually implemented as an approximation to a scattering model

[50, 65, 87, 101] or as a composition [81].

The splatting algorithm makes several approximations to theoretically correct meth-

ods of achieving this resampling and compositing. These approximations cause three

pervasive problems in splatting implementations: thesplat integration problem, theover-

lapping splat problem, and thesplat ordering problem. These problems and their impact

are discussed in this section. Some partial solutions are given in Section 1.2.2.2 and dis-

cussed in Section 1.2.2.3.

The Splat Integration Problem: The first approximation is that the splatting algorithm

integrates the 3D reconstruction filter kernel to produce a 2D filter kernel (Figure 1.5),

when instead it should do a composition. This creates the problem shown in Figure 1.7.

Consider a sight ray that intersects the 3D reconstruction kernel, and consider three small

pointsa; b; andc along this ray. The correct visibility ordering is the composition of the

points:a over b over c. However, because the 3D kernel is integrated to a 2D kernel, the

actual result is the sum of the points:a+b+c. This could be avoided if the integration were

done for every splat, but for efficiency the integration is pre-computed in a pre-processing

step, and the splat is convolved with a 2D and not a 3D filter kernel.

12

b

3D splat

view plane

c

view ray

a

Figure 1.7: Thesplat integration problem: each splat kernel is integrated, not composited,
along the viewing direction.

Despite being incorrect, the splat integration problem does not usually produce no-

ticeable artifacts. Instead, it contributes to the common fuzzy appearance of a splatted

dataset, since summing tends to wash out details.

The Overlapping Splat Problem: The second approximation is that the splatting algo-

rithm does both the reconstruction and the visibility calculation on a per-splat basis. This

creates the problem shown in Figure 1.8. Consider two splats, splat 1 and splat 2, and

assume that splat 1 is drawn before splat 2. Each splat reconstructs the continuous func-

tion within its footprint. In the space where the splats overlap, this reconstructed function

should be thesumof the functions reconstructed by both splats. This correct result is

shown in Figure 1.8a. However, each splat is composited, and not summed, on top of the

previously-rendered splats — otherwise, there would be no occlusion between splats, and

the algorithm would not correctly solve the hidden surface problem. The result is shown

in Figure 1.8b: splat 2 is composited on top of splat 1. This means the reconstructed

function is incorrect in the space where the splats overlap.

13

(b)

splat 1 splat 2splat 2splat 1

(a)

3D

2D

Figure 1.8: The overlapping splat problem. Assume that splat 1 is drawn before splat 2.
(a) The desired result: the splat contributions are summed where they overlap. (b) The
actual result: splat 2 is composited on top of splat 1, and splat 1 is occluded where the
splats overlap.

This problem is widespread in splatting implementations, because in order to avoid

the reconstruction artifact ofsample frequency ripple[64] (e.g. in order for a dataset to

be rendered without holes between the splats), it is necessary for the splats to overlap. An

example illustrating the overlapping splat problem is given in Figure 1.13 and described

in Section 1.2.2.3.

The Splat Ordering Problem: The overlapping splat problem interacts with the order

in which the volume raster is traversed; this interaction gives rise to thesplat ordering

problem. As discussed in Section 1.2.1 above, the volume raster must be traversed in

either a back-to-front or a front-to-back order (traversal orderings are discussed in Chap-

ter 2). As shown in Figure 1.9, this causes a problem when the traversal direction changes

because a corner of the volume raster rotates past the viewing plane. In Figure 1.9a the

visibility ordering traverses scanlines parallel to face B. In Figure 1.9b the volume has

rotated slightly, and the visibility ordering now traverses scanlines parallel to face A. This

sudden change in visibility ordering causes the order in which the splats overlap to change

14

(a) (b)

rotate

1

view planeview plane

2

A B A B

4
3

4

1
2

3

Figure 1.9: Thesplat ordering problem: a small change in the viewing parameters causes
the traversal ordering to change.

throughout the entire volume, which can cause various visual artifacts. An example of the

splat ordering problem is shown in Figure 1.16 in Section 1.2.2.3.

1.2.2.2 Summation Buffers

The source of all the problems mentioned above is that the reconstruction and visibility

calculations are done on a per-splat basis. This can be addressed by using either avol-

umetric summation bufferor a sheet summation buffer. This section describes these

techniques.

Volumetric Summation Buffer: The theoretically correct way to render a volume is to

first reconstruct the whole volume, and then calculate the visibility of the whole volume.

For splatting this can be done by using a data structure called avolumetric summation

buffer (Figure 1.10). Assume that the volume raster hasn � n � n resolution, and the

image raster hasm � m resolution. A volumetric summation buffer is another volume

raster withm � m � n resolution: it matches the image raster resolution in width and

height and has the same depth resolution as the volume raster. As shown in Figure 1.10,

15

original volume
(n� n� n resolution) buffer (m�m� n resolution)

screen

volumetric summation

n

n

m

m

n

n

Figure 1.10: Summing the splats in avolumetric summation bufferbefore the visibility
calculation.

each voxel is mapped into the summation buffer and convolved with a 3D reconstruction

kernel. The kernel spreads the voxel’s energy out into the buffer. This energy is summed,

not composited, into every summation buffer voxel within the kernel’s footprint. This

process is repeated for every voxel in the volume raster. Next, for every pixel in the image

raster the renderer performs a visibility calculation on the depth column of voxels that lie

behind the pixel.

This technique calculates the reconstruction and visibility on a per-volume basis in-

stead of a per-voxel basis, and it avoids all the problems mentioned above. Implemented

in this manner, the volumetric summation buffer algorithm falls into the category of hy-

brid order volume rendering algorithms given in Section 1.1.2, with the exception that

it uses a more accurate 3D resampling filter instead of the 1D or 2D resampling filters

used in other hybrid order algorithms. Although more correct than the standard splatting

algorithm, the volumetric summation buffer algorithm has two major disadvantages:

� the buffer requires a large amount of memory, and

16

sheet summation
original volume

buffer
screen

composition

summation

Figure 1.11: Summing the splats in a sheet summation buffer before the visibility calcu-
lation.

� the algorithm is hard to parallelize, because the buffer is a shared resource.

Westover proposes this algorithm [99], but does not implement it.

Sheet Summation Buffer: Many of the advantages of a volumetric summation buffer

are available from reconstructing the volume one sheet at a time, and then compositing

these sheets together. This is done with a data structure called asheet summation buffer

(Figure 1.11), which Westover proposes and implements [98, 99]. This technique requires

accessing the volume insheets, which are slices of the dataset which, after the viewing

transformation, are as parallel as possible to the viewing plane. As shown in Figure 1.11,

the voxels from each sheet are mapped into the summation buffer and convolved with a

2D reconstruction kernel. The energy from the kernel is summed, not composited, into the

sheet buffer. After all the voxels in the sheet are summed, the sheet buffer is composited

into the screen.

Although not as theoritically correct as a volumetric summation buffer, the sheet buffer

solves the overlapping splat problem within each sheet. Furthermore, it addresses the

17

3D splats

view ray

view plane

a

b

c

d

Figure 1.12: The sheet summation buffer suffers from the splat integration problem, and
the splat overlap problem in the screen-spacez-dimension.

volumetric buffer’s two main disadvantages: it does not require a large amount of memory

and it does not make the splatting algorithm difficult to parallelize. Howerver, the sheet

buffer still suffers from the splat integration problem, and it suffers from the splat overlap

problem in the screen-sapcez-dimension.

This is shown in Figure 1.12. Consider a sight ray that intersects the two 3D recon-

struction kernels, and consider four small pointsa; b; c; andd along this ray. The correct

visibility ordering is the composition of the points:a over b over c over d, but because

of integrating the splat kernel and then compositing where the kernels overlap, the actual

result is(a+ b1 + c1)over (b2 + c2 + d).

The summed sheet buffer also suffers from two illumination problems which are de-

scribed in the next section.

18

1.2.2.3 Results and Discussion

This section gives an example of the overlapping splat problem, and then shows how

to mitigate the problem by using attenuated splats or a summed sheet buffer. It then

demonstartes two problems with the summed sheet buffer technique.

Figure 1.13 demonstrates an example of the artifacts caused by the overlapping splat

problem. It shows four frames from an animation of a rotating cube, rendered with the

splatting implementation described in Section 1.2.1 and using the Perspective Back-to-

Front ordering algorithm described in Chapter 2. The dataset is a40 � 40 � 40 hollow

cube texture mapped with alternating10� 10� 10 red and white cubes.

Figure 1.13 illustrates two visual artifacts caused by the overlapping splat problem.

Figures 1.13a and 1.13d show a horizontal and vertical scanline artifact caused by the

last scanline overlapping the previously drawn scanlines. Figures 1.13b and 1.13c show

a second artifact. Note that in Figure 1.13b the marked left-hand stripe appears slightly

wider than the right-hand stripe. In Figure 1.13c the situation is reversed: the left-hand

stripe appears slightly narrower than the right-hand stripe. This is caused by the splats

overlapping where the two stripes meet: in Figure 1.13b the left hand stripe is drawn

last and so it overlaps the right-hand stripe, while in Figure 1.13c the opposite happens.

Both of these problems are worse when the dataset is animated — when this happens the

artifacts appear to swim across the face of the dataset in a distracting manner.

Figure 1.14 shows the same animated sequence as Figure 1.13, except that here the

alpha channel of the splats has been attenuated so they appear semi-transparant — note

that the sides and back face of the cube are visible through the front face. In Figure 1.14

the artifacts from Figure 1.13 are less noticeable. This is because the when the splats

are semi-transparant some color from the overlapped splat shows through the overlapping

splat. Referring back to Figure 1.8b on page 14, if splat 1 and splat 2 are both semi-

transparant then the effect is more like Figure 1.8a, no matter which splat is drawn last.

Figure 1.15 also shows the same animated sequence as Figure 1.13, except that here

the splats are rendered into a sheet summation buffer. The artifacts from Figure 1.13

are no longer visible. From this it appears that the sheet summation buffer solves the

19

(a) (b)

(c) (d)

Figure 1.13: An animation illustrating the overlapping splats problem. The animation
shows four frames from an animation of a rotating cube, rendered with composited splats.
Artifacts from the overlapping splats problem are noted with arrows.

20

(a) (b)

(c) (d)

Figure 1.14: The same animation as Figure 1.13, rendered with composited attenuated
splats. The artifacts from Figure 1.13 are less noticable.

21

overlapping splat problem, and for the artifacts shown in Figure 1.13 it does. However,

the sheet summation buffer has two illumination problems which limit its usefulness.

The first problem is that the summed sheet buffer suffers from thesplat ordering

problem, which causes an apparant illumination error. This is illustrated in Figure 1.16.

Here a60� 60� 60 cube texture-mapped with10� 10� 10 green and red sub-cubes is

shown rendered with an orthographic projection. Between Figure 1.16a and Figure 1.16b

the visibility ordering changes, as illustrated in Figure 1.9 back on page 15. In Figure 1.9a

the left-hand cube face is bright and the right-hand face is dim, while in Figure 1.9b the

situation is reversed. This occurs because in Figure 1.9a the sheet buffer is parallel to

the left-hand cube face, while in Figure 1.9b it is parallel to the right-hand cube face.

In Figure 1.9a the left-hand face is bright because the splats are all summed together,

while in Figure 1.9b the left-hand face becomes dimmer because now rows of splats are

composited instead of summed. The converse happens to the right-hand cube face.

The gist of the problem is that summing the splats in sheets makes the sheets look

brighter relative to the composition between the sheets. This causes what appears to be an

illumination error that manifests itself as a flashing effect as the cube is rotated.

The second problem is the summed sheet buffer has an apparant illumination error

when used with a perspective projection. This problem is illustrated in Figure 1.17. Here

a40� 40� 40 cube texture-mapped with10� 10� 10 sub-cubes is shown rendered with

a perspective projection. Note that the bottom face of the cube brightens as it narrows.

This occurs because the perspective distortion packs more and more splats into each unit

of screen area as the cube face narrows, and since the splats are summed together they

become brighter. As the perspective distortion becomes greater this brightening continues

until the pixels are completely saturated.

This problem does not occur with an orthographic projection because the number of

splats projected onto each unit of screen area remains constant (see Figure 1.16 above).

This problem — which has not been previously reported in the literature — shows that

the sheet summation buffer does not properly calculate illumination for perspective pro-

jections.

22

(a) (b)

(c) (d)

Figure 1.15: The same animation as Figure 1.13, rendered with a sheet summation buffer.
There are no overlapping splat artifacts.

23

(a) (b)

Figure 1.16: A sheet summation buffer showing thesplat ordering problem(see Fig-
ure 1.9).

24

Figure 1.17: The sheet summation buffer does not calculate illumination properly for
perspective projections.

25

1.2.3 Reconstruction Kernel

As noted in Section 1.2.1 above, Westover uses a Gaussian reconstruction kernel in part

because it has convenient mathematical properties. However, a Gaussian is not a very

good reconstruction filter because it has substantial blurring in the passband (see Marsch-

ner and Lobb [64]). Crawfis and Max [21] give a better reconstruction filter for splatting,

which has the form of a piecewise cubic spline. This filter is optimal in the sense that

it reconstructs a rectangular lattice of voxels of constant value with the smallest possible

variance. This is the filter used for the images presented in this dissertation.

1.2.4 Advantages and Disadvantages of Splatting

This section compares splatting to other volume rendering algorithms. When listing the

disadvantages of splatting, it distinguishes between inherent problems and those that are

due to implementation inaccuracies.

1.2.4.1 Advantages of Splatting

The main advantage of splatting over ray casting is its inherent speed advantage. In ray

casting, reconstruction is performed for each sample point along the ray. At each sample

point ak3 convolution filter is applied. Even if, on the average, each of then3 voxels

are sampled only once, ray-casting has a complexity ofat leastk3n3. In splatting, on

the other hand, the convolution is precomputed, and every voxel is splatted exactly once.

Each splat requiresk2 compositing operations. Therefore, one can expect a complexity of

at mostk2n3. This gives splatting an inherent speed advantage. As a side product of this

advantage, in a splatting implementation one can afford to employ larger reconstruction

kernels and improve the accuracy of splatting while incurring anO(k2) penalty instead of

anO(k3) penalty.

Because splatting is an object-order rendering algorithm, it has a trivial parallel imple-

mentation (Yagel and Machiraju [107], Westover [99]), where the volume raster is evenly

divided among the processors. It is more difficult to distribute the data with ray-driven

26

approaches, because each ray might need to access many different parts of the volume

raster.

Splatting is the preferred volume rendering technique when the desired result is an

X-ray projection image instead of the usual composited image [72]. This is because the

summation of pre-integrated reconstruction kernels is both faster and more accurate than

ray-casting approaches, which require the summation of many discrete sums. Creating X-

ray projection images from volumes is an important step in the reconstruction algorithms

employed by tomographic medical imaging devices [72], such as CT and PET [7].

Splatting is trivially accelerated by just ignoring empty voxels. It can further be ac-

celerated by extracting and storing just those voxels which contribute to the final image

[106], which prevents traversing the entire volume raster. This is equivalent to similar ac-

celeration techniques for volume ray-casting, such as space-leaping (Yagel and Shi [108])

or fitted extents (Sobierajski and Avila [90]), which accelerate ray casting by quickly

traversing empty space.

Because the images are calculated in a strict front-to-back or back-to-front order, ob-

serving the partially created images can give types of insight into the data which are not

available from image-order techniques. In particular, with a back-to-front ordering par-

tial images reveal interior structures, while with a front-to-back ordering it is possible to

terminate the rendering early [72].

1.2.4.2 Inherent Disadvantages of Splatting

An ideal volume renderer first performs the process of reconstruction and then the pro-

cess of integration (or composition) for the entire volume. Splatting forces both recon-

struction and integration to be performed on a per-splat basis. As discussed above in

Section 1.2.2.1, the result is incorrect where the splats overlap, and the splats must over-

lap to ensure a smooth image. This problem is particularly noticeable when the traversal

order of the volume raster changes during an animation [98, 99].

For efficiency reasons, in splatting both (transfer-function based) classification and

shading are usually applied to the data prior to reconstruction. This is also commonly

done in ray-casting [58]. However, this method will produce correct results only if both

27

classification and shading are linear operators. The result of employing a non-linear trans-

fer function or illumination model may, for example, cause the appearance of pseudo-

features that do not exist in the original data. Avoiding these features requires shading

models which only model diffuse illumination. While for ray casting methods exist that

perform classification and shading only after reconstruction to produce accurate results

[71, 80], this is not possible in splatting.

1.2.4.3 Implementation-Based Disadvantages of Splatting

With a ray-casting volume rendering algorithm it is easy to terminate the rays early when

using a front-to-back compositing scheme, which can substantially accelerate rendering.

Although not reported in the literature, early termination could potentially be implemented

for splatting by employing the dynamic screen mechanism [84] (also used by [54] for

shear-warp volume rendering). Also, the ray-driven splatting implementation of Mueller

and Yagel [72] can support early ray termination.

While ray casting of volumes was originally implemented for both orthographic and

perspective viewing, splatting was fully implemented only for orthographic viewing. Al-

though ray casting has to include some mechanism to deal with the nonuniform recon-

struction that is necessary with diverging view rays, it seems splatting needs to address

several more inaccuracies. For the following discussion, it is useful to adopt the definition

given by Crawfis and Max [21], Mueller and Yagel [72], and Yagel et al. [106] that views

the footprint table as a polygon in world space centered at the voxel position with the

pre-integrated filter kernel function texture-mapped onto it. As is described in [72], when

mapping the footprint polygon onto the screen an accurate perspective splatting imple-

mentation must: (1) align the footprint polygon perpendicularly with the projector (sight

ray) that goes through the polygon center; (2) perspectively project it to the screen to get

its screen extent, and (3) ensure that the projector (sight ray) for every pixel that falls

within this extent traverses the polygon at a perpendicular angle as well. All three condi-

tions are violated in Westover’s splatting algorithm [97]. Mueller and Yagel [72] give a

voxel-driven splatting approach that takes care of conditions (1) and (2), and a ray-driven

approach that fulfills all three conditions.

28

1.2.5 Splatting Implementation

The work in this dissertation is built on top of a modified version of the ’splat renderer’

reported by Yagel et al. [106]. It make use of rendering hardware to quickly draw the

splats, in a manner similar to Crawfis and Max [21]. For each splat it draws a polygon in

world space centered at the voxel position. The polygon is rotated so it is perpendicular

to the ray passing from the eye point through the voxel position. The splat kernel is pre-

computed and stored in a256 � 256 table which is texture mapped onto the polygon by

the rendering hardware.

For a given volume the renderer extracts and stores a subset of the voxels. For each

voxel it evaluates a transfer functiont = F (r; �), wherer and� are the gradient and

density of the voxel; it includes the voxel in the subset ift exceeds a user-defined thresh-

old. It stores this volume subset as a 2D array of splat rows, where each row contains only

the extracted voxels. Each row is implemented as an array of voxels, but the voxels are

not necessarily contiguous, and so the renderer must also store each voxel’s location and

normal vector. In general each row may contain a different numbers of voxels. Despite not

storing the empty voxels, this data structure can still be traversed in either a back-to-front

or front-to-back order.

29

CHAPTER 2

A VISIBILITY ORDERING ALGORITHM FOR
RECTILINEAR GRIDS

2.1 Introduction

Among the earliest rendering algorithms were those that rely on sorting the geometric

primitives according to their distance to the viewing plane [91]. These algorithms solve

the hidden surface problem by visiting the primitives in depth order, from farthest to

nearest, and scan-converting each primitive into the screen buffer. Because of the order in

which the primitives are visited, closer objects overwrite farther objects, which solves the

hidden surface problem (at least as long as the primitives do not form a visibility cycle).

Such methods are referred to aspainter’s algorithmsand aslist-priority algorithms.

By definition, any painter’s algorithm requires sorting the primitives. In the general

case it takesO(n logn) time to sortn primitives. However, because of their structure, vol-

ume grids often afford a trivial sort, which simply involves indexing the volume elements

in the proper order. Such sorts take onlyO(n) time forn voxels. In this chapter such an

indexing scheme is referred to as avisibility orderingof a grid.

This chapter gives a visibility ordering for a rectilinear volume grid, termed theper-

spective back-to-front (PBTF)method, which is correct for both orthographic and per-

spective projections. To date the most widely used visibility orderings for volume ren-

dering are theback-to-front (BTF) method and what this chapter shall call theWestover

back-to-front (WBTF) method (both are defined in Section 2.2 below). While both of

30

these visibility orderings are correct for orthographic projections of volumes, they are not

correct for perspective projections. This fact, which is demonstrated in Section 2.4 below,

is not well known in the volume rendering literature.

The main contribution of this chapter is a formal proof of the correctness of the per-

spective back-to-front method. While the PBTF visibility ordering has been presented in

the literature [4, 68], a proof of correctness for the method has not been previously given.

Furthermore, the method is not widely known in the volume rendering literature.

This chapter is organized as follows. Section 2.2 reviews previous work in the area

of grid visibility orderings. Section 2.3 defines the PBTF visibility ordering, and gives

a proof of correctness. Section 2.4 compares the PBTF method with the BTF and the

WBTF methods, and shows perspective views which only the PBTF method is able to

render correctly. Section 2.5 finishes the chapter by listing some areas of future work.

2.2 Previous Work

This section reviews previous work in the area of grid visibility orderings. First previous

work in ordering regular grids is presented. This includes two well-known and popular or-

dering approaches: theback-to-front (BTF)method, and another method which has been

called various things but which is called theWestover back-to-front (WBTF)method in

this chapter. Next, two references which give a correct regular grid traversal for perspec-

tive projections are discussed. The section concludes with a discussion about visibility

orderings for octrees and grids of convex polyhedra.

2.2.1 Regular Grids

Frieder et al. give theback-to-front (BTF)visibility ordering [32]. Figure 2.1 shows pseu-

docode for this ordering. It is based on the simple observation that, given a volume grid

and a view plane, for each grid axis there is a traversal direction that visits the voxels in or-

der of decreasing distance to the view plane. A 2D example of this is given in Figure 2.2.

Here the origin is the farthest point from the view plane, and traversing the grid in order

31

choosezmin, zmax, ymin, ymax, xmin, xmaxaccording to view direction
for z= zminto zmax

for y = yminto ymax
for x = xminto zmax

splat(voxel[x,y,z])

Figure 2.1: Pseudocode for the back-to-front visibility ordering [32].

view plane

y

x
(0; 0)

Figure 2.2: A 2D example of the BTF visibility ordering.

of increasing values ofx andy always visits voxels in order of decreasing distance. This

extends naturally to 3D.

The choice of which index changes fastest can be arbitrary — although Figure 2.1

shows the orderingz; y and thenx, any permutation can be used. This means the BTF

method can support efficient methods of accessing the volume data by taking into account

how the data is stored on disk. It also allows rendering when only some slices but not the

entire volume will fit into memory.

Frieder et al. [32] only test the BTF method with orthographic projections, which

provides convenient views given their application domain of biomedical visualization.

While the BTF ordering correctly renders orthographic projections, it turns out not to

work for perspective projections. This is demonstrated in Figure 2.25 in Section 2.4.

32

let k = axis most perpendicular to view plane
let j = axis next most perpendicular to view plane
let i = axis most parallel to view plane
choosekmin, kmax, jmin, jmax, imin, imaxaccording to view direction

for k = kminto kmax
for j = jmin to jmax

for i = imin to imax
splat(voxel[i,j,k])

Figure 2.3: Pseudocode for the Westover back-to-front visibility ordering [98, 99].

Westover gives theWestover back-to-front (WBTF)visibility ordering [98, 99]. Pseu-

docode for this ordering is given in Figure 2.3. The WBTF ordering is similar to the BTF

ordering in that each grid axis is traversed in the direction that visits voxels in order of

decreasing distance to the view plane. The algorithm goes farther than the BTF technique

in that it also chooses a permutation of the grid axes, such that the slowest changing axis

(the one in the outermost loop) is the axis mostperpendicularto the view plane, while

the quickest changing axis is the one mostparallel to the view plane. The axis in the

outermost loop chooses slices of the data set which are perpendicular to one of the grid

axes. The WBTF method chooses those slices which, after the view transformation, are

closer to being parallel to the view plane than either of the other two slice directions.

In his publications [98, 99] Westover’s application domain is also biomedical visual-

ization, and many of his images are rendered using an orthographic perspective. However,

Westover also describes an implementation for perspective projections, and while it is true

that his method works for a greater set of possible viewpoints than the BTF method, the

WBTF ordering turns out not to work for all perspective projections. This is demonstrated

in Figure 2.26 in Section 2.4.

Upson and Keeler give theV-BUFFER traversal method [94]. Pseudocode for this

ordering is given in Figure 2.4. This ordering is similar to the WBTF traversal in that

it processes the volume data in slices which are as parallel as possible to the view plane

33

let k = axis most perpendicular to view plane
choosekmin, kmaxaccording to view direction

for k = kminto kmax
foreach j, i from a concentric sweep about the slicek

splat(voxel[i,j,k])

Figure 2.4: Pseudocode for the V-BUFFER visibility ordering [94].

view plane

4321 5

9
8
7
6

Figure 2.5: The V-BUFFER visibility ordering within each slice.

— hence the orderings have the same outermost loop. The V-BUFFER traversal differs

in that it uses a more complicated “concentric sweep” to order the voxels in each slice.

Although Upson and Keeler do not give the full details, the sweep strictly orders the voxels

according to increasing distance from the view plane. An example of the ordering for one

slice is shown in Figure 2.5: when the viewing plane is beyond one corner of the slice, the

voxels are visited in the diagonal pattern shown. This differs from the WBTF ordering,

which accesses each slice in a scanline fashion, and hence does not visit the voxels in a

strict distance ordering.

Although Upson and Keeler [94] do not discuss whether their method supports per-

spective as well as orthographic projections, the visibility performance of the ordering

34

should be equivalent to the WBTF ordering. This is because the visibility problems

demonstrated in Figure 2.26 for the WBTF method arise from the traversal direction of the

outermost loop, which is the same for the two techniques. Hence the V-BUFFER method

should suffer the same visibility problem shown in Figure 2.26 as the WBTF method

(although the V-BUFFER ordering was not tested as part of this dissertation).

2.2.2 Correct Regular Grid Perspective Ordering Methods

There are two references that give a regular grid visibility ordering which is correct for

perspective projections. One is by Anderson [4], which describes the visibility ordering in

the context of rendering 2D grid surfaces. This ordering is equivalent to the 2D ordering

given in Section 2.3.3. The Anderson reference inspired the research reported in this

chapter.

The second reference is by Max [68], which describes the visibility ordering in the

context of rendering a multi-resolution grid which results from a technique for solving

partial differential equations calledadaptive mesh refinement. This ordering is equivalent

to the 3D ordering given in Section 2.3.4.

Although both of these references give the same visibility ordering as the perspective

back-to-front (PBTF) ordering that is described in this chapter, this chapter still makes the

following unique contributions:

� It gives a rigorous argument for the correctness of the PBTF method for perspective

projections.

� It demonstrates that two well-know visibility orderings, the BTF and the WBTF

methods, are in fact not correct for perspective projections.

� It presents the PBTF ordering method in the context of splatting, which is a common

volume rendering method that requires a visibility ordering.

2.2.3 Non-Regular Grids

Aref and Samet [5] give a back-to-front or front-to-back traversal of an octree for a per-

spective projection. Because a non-leaf octree node can be thought of as a2 � 2 � 2

35

grid, it is easy to enumerate all the possible visibility orderings between the node and an

arbitrary view point. The technique is based on a recursive octree traversal along with a

table-lookup visibility computation.

Williams [103] gives a linear-time ordering algorithm for grids composed of acyclic

convex polyhedra. A similar technique is also reported by Max et al. [65]. Both involve

constructing a directed graph which represents the occlusion between adjacent cells, and

then topologically sorting the resulting graph.

2.3 The Perspective Back-to-Front Visibility Ordering

This section gives the perspective back-to-front (PBTF) visibility ordering algorithm, and

a proof of its correctness. The proof is constructive, so it yields a formal description of

the PBTF visibility ordering. The ordering is presented and proved in three parts: first for

a 1D grid, then a 2D grid, and then finally a 3D grid. In order to simplify the presentation

the proof is given in terms of a front-to-back ordering, but it is trivial to generate the

equivalent back-to-front ordering by simply reversing the ordering given.

Here is a brief, intuitive overview of the PBTF visibility ordering method:

1D Visibility Ordering: Project the view point onto the 1D grid, partitioning it into two

halves (Figure 2.10). Traverse each half in order of increasing distance from the

view point.

2D Visibility Ordering: Project the view point onto the 2D grid, partitioning it into four

quadrants (Figure 2.15). Traverse each quadrant in a scanline fashion in order of

increasing distance from the view point.

3D Visibility Ordering: Project the view point onto the 3D volume, partitioning it into

four quadrants (Figure 2.22). Traverse each quadrant in a scanline fashion in order

of increasing distance from the view point.1

1This gives the visibility ordering for the familiar case where the view point is outside of the volume.
The proof deals with the more general case where the view point is located inside the volume.

36

The key idea of the PBTF ordering over the BTF and WBTF orderings is that the

projection of the view point onto the grid must be taken into account in order to properly

compensate for the perspective distortion. Methods such as the BTF and the WBTF order-

ings, which try to find a single traversal direction for each grid axis, do not have enough

degrees of freedom in this choice to properly compensate for the perspective distortion.

This is further demonstrated in Section 2.4, which compares the performance of the three

orderings.

The organization of this section is as follows: First, Section 2.3.1 lists various defi-

nitions and assumptions which are used during the rest of the proof. Then Section 2.3.2

gives the 1D visibility ordering, followed by the 2D ordering in Section 2.3.3 and the 3D

ordering in Section 2.3.4. Finally, Section 2.3.5 discusses the proof.

2.3.1 Definitions and Assumptions

We assume that we have a scene composed of a set ofpoint objectsP that we wish to

render. Point objects are luminous points that have no discernible dimension; mathemat-

ically a point object is a tuplep = (c;x), wherec is acolor vectorandx is a location

vector. A color vector is a tuplec = (�1; �2; : : : ; �n; �), where�1; �2; : : : ; �n are different

colors (in practice usually only three colors — red, green, and blue — are specified), and

� is the opacity of the object. A location vector is a tuplex = (x; y; z) which gives the

three-dimensional location of the point object. This definition of a point object is similar

to Reeve’s definition [83] of the particles that make up a particle system.

A viewpoint vp = (vpx;vpy;vpz) is a location inR3 from which the scene is

viewed. Relative tovp we can define theobstructsrelation “k” as follows. Letp1;p2,

andp3 be point objects. Ifvp;p1; andp2 lie on a straight line such thatp1 is closer tovp

thanp2, thenp1kp2 (Figure 2.6). If a point object does not obstruct another point object

we write “6 k”. Note that in Figure 2.6p2 6 kp1, and because they do not lie on a straight

line with vp bothp1 6 kp3 andp3 6 kp1.

A set of point objects can be put into avisibility ordering, such that objectp1 is

rendered in front ofp2 iff p2 6 kp1. The phrase “is rendered in front of” can either mean that

objectp1 or objectp2 is rendered first, depending on how each point object is composited

37

vp

p1

p2

p3

Figure 2.6: The obstructs relation.p1kp2, butp1 6 kp3.

into the accumulating image. We refer to this order asfront-to-back or back-to-front.

In a front-to-back visibility ordering, the objects closest tovp are rendered first, and

so once a point object has been composited into the image it occludes all subsequent

objects. In a back-to-front visibility ordering, the objects farthest fromvp are rendered

first, and so each point object occludes those which have already been composited into

the image. For a back-to-front traversal each object is composited using Porter and Duff’s

over operator [81], while a front-to-back traversal uses theunder operator. If the object

pj is composited into the pixelc = (�; �), then

pj over c �

(
�new = �j + �old(1� �j)
�new = �j + �old(1� �j)

; (2.1)

and

pj under c � c over pj �

(
�new = �old + �j(1� �old)
�new = �old + �j(1� �old)

; (2.2)

where(�new, �new) are the new values ofc after compositingpj, defined in terms of the

old values(�old; �old). In this section, unless otherwise specified a front-to-back traversal

is assumed.

If the objectspj andpk are point objects, then an absolute visibility ordering (with

respect to some viewpoint) exists between them, because point objects either wholly oc-

clude or wholly do not occlude each other. This is not the case with larger objects —

38

p3

p1
p2

Figure 2.7: An example of three polygons which do not have a visibility ordering.

Figure 2.7 shows an example of three polygonsp1; p2; andp3, where part of each poly-

gon occludes a part of another polygon. From the viewpoint of this figure, no visibility

ordering exists for these three polygons.

If a visibility ordering exists between objectsp1 andp2, we can express this ordering

with avisibility ordering operator:

p1)p2; (2.3)

where “)” (read: “visited before”) is a relation which indicates that objectp1 is visited

before objectp2 during a visibility ordering. For a back-to-front ordering this meansp1

is farther thanp2 from vp, while for a front-to-back orderingp1 is closer thanp2 to vp.

We also use thevisibility ordering delimiterh i to indicate a visibility ordering among

sequential objects. For example,

hpj : 1 � j � 3i (2.4)

indicates

p1)p2)p3: (2.5)

Visibility ordering delimiters can be nested, so

hhpi;j : 1 � i � 3i : 1 � j � 2i (2.6)

indicates

p1;1)p2;1)p3;1)p1;2)p2;2)p3;2: (2.7)

39

The visibility delimiter may also be applied to a set. If setA = fp1;p2;p3g, thenhAi

indicates the contents ofA placed in a visibility order, e.g.:hAi = hpj : 1 � j � 3i =

p1)p2)p3.

When dealing with nested visibility ordering delimiters, it will be common that the

order of the iteration variables can be permuted without changing the overall visibility

ordering. For example, for the set of point objects referenced in Equation 2.6 it could be

the case that either of the following orderings is correct:

hhpi;j : 1 � i � 3i : 1 � j � 2i
or hhpi;j : 1 � j � 2i : 1 � i � 3i:

(2.8)

In such situations, as a notational convenience we shall list just one of the visibility order-

ings and then refer to the other as the first ordering’sdual, formed by a permutation of the

iteration variables. For the example above we would write:

hhpi;j : 1 � i � 3i : 1 � j � 2i or dual, (2.9)

where the term “dual” is just a notation for indicating the same visibility ordering with a

permutation of the iteration variables.

Visibility ordering operators nested three deep will also be common. In such cases a

statement like

hhhpi;j;k : 1 � i � 3i : 1 � j � 2i : 1 � k � 3i or duals (2.10)

is shorthand for

hhhpi;j;k : 1 � i � 3i : 1 � j � 2i : 1 � k � 3i
or hhhpi;j;k : 1 � i � 3i : 1 � k � 3i : 1 � j � 2i
or hhhpi;j;k : 1 � j � 2i : 1 � i � 3i : 1 � k � 3i
or hhhpi;j;k : 1 � j � 2i : 1 � k � 3i : 1 � i � 3i
or hhhpi;j;k : 1 � k � 3i : 1 � i � 3i : 1 � j � 2i
or hhhpi;j;k : 1 � k � 3i : 1 � j � 2i : 1 � i � 3i:

(2.11)

2.3.1.1 Dividing Property of a Plane

In the sections that follow, we make use of thedividing propertyof a plane (see Fig-

ure 2.8). Consider a planeP . It divides space into two half-spacesP+ andP�. Assume

40

vp

P

P+

P–

p1

p2

p3

Figure 2.8: The planeP divides the space into two half-spacesP+ andP�. fvp;p1g 2
P+, andfp2;p3g 2 P�.

without loss of generality that the view pointvp is in P+, and also assume without loss

of generality that compositing is front-to-back. Consider any point objectsp1 in P+ and

p2;p3 in P� such thatp1kp2 andp1 6 kp3. Because these are point objects, they must lie

entirely in one of the half-spacesP+ orP�; they cannot straddle the plane and lie in both.

Clearlyp1)p2 andp1)p3 both hold. Even thoughp3)p1 also holds (becausep1 and

p3 do not obstruct each other), as this example shows we can define the visibility ordering

operator to always order objects according to increasing distance fromvp. Because all

objects inP+ are closer tovp than all objects inP�, we may state

P+)P�; (2.12)

or that all point objects inP+ are rendered before all point objects inP�. This can

be extended to more elaborate shapes through the intersection and union of similar half-

spaces.

2.3.1.2 1D, 2D, and 3D Grids

In this chapter we are most interested in 1D, 2D, and 3Drectilinear gridsof point objects.

A 1D rectilinear grid of point objects (Figure 2.9a) is a setfP;Ug. P is a sequence of

41

point objects(p1; : : : ;pn) that lie along a straight line which we call theu axis. U is a

spacing vector(u1; : : : ; un�1), whereui gives the distance betweenpi andpi+1.

A 2D rectilinear grid of point objects (Figure 2.9b) is a setfP;U;Vg. P is a 2D

sequence of point objects(pi;j : 1 � i � n; 1 � j � m) which lie on a two-dimensional

rectilinear griduv, which we call theuv plane. U is a spacing vector(u1; : : : ; un�1),

whereui gives the distance between the grid linesui andui+1, and similarlyV is a

spacing vector(v1; : : : ; vm�1), wherevj gives the distance between the grid linesvj and

vj+1.

And similarly, a 3D rectilinear grid of point objects (Figure 2.9c) is a setfP;U;V;

Wg. P is a 3D sequence of point objects(pi;j;k : 1 � i � n; 1 � j � m; 1 � k � p)

which lie on a three-dimensional griduvw, which we call theuvw space.U is a spacing

vector(u1; : : : ; un�1), whereui gives the distance between the grid planesui andui+1,

V is a spacing vector(v1; : : : ; vm�1), wherevj gives the distance between the grid planes

vj andvj+1, and similarlyW is a spacing vector(w1; : : : ; wp�1), wherewk gives the

distance between the grid planeswk andwk+1.

Note that although each grid pointp still consists of a color vectorc and a location

vectorx, in an implementation the location vector is not stored with each grid point, since

the location is quickly computed from the point’s array indices.

2.3.2 1D Visibility Ordering

This section gives the perspective back-to-front (PBTF) visibility ordering for a 1D grid.

First, Section 2.3.2.1 discusses the possible relationships between a view point and a 1D

grid. These relationships yield two cases:edge-onandcorner-on views of a grid. The

edge-on case is the most general; Theorem 1 gives a visibility ordering for this case in

Section 2.3.2.2. Corollary 1 then gives the visibility ordering for the corner-on case in

Section 2.3.2.3.

42

p1

p2

pn-1

pn

p1,1

p2,1

pn-1,1

p1,2

p1,m-1
p1,m

p3,1p1,3

pn,1

p1,1,1

pn-1,1,1

p1,2,1

p1,m-1,1
p1,m,1

pn,1,1

p1,1,2

p1,1,3

p1,1,p-1

p1,1,p

(a)

(b)
(c)

u axis

u axis
v axis

p3,1,1p2,1,1
p1,3,1

u axis
v axis

w axis

Figure 2.9: 1D, 2D, and 3D grids.

2.3.2.1 Views of a 1D Grid

Assume that we have a 1D grid as shown in Figure 2.9a and a viewpointvp, and let the

projection ofvp on theuaxis bevpu. Then there are two possibleviewsor relationships

between the grid andvpu; these are summarized in Table 2.1.

We call the situation where the projection ofvp is contained within the grid boundary

(e.g.u1 � vpu � un) theedge-onview — by this we mean that the view point is looking

at the grid surface “edge-on” (see Figure 2.10). A visibility ordering for this view is given

in this section in Theorem 1. The only other possible views are whenvpu falls beforeu1

or afterun; where refer to these ascorner-onviews (see Figure 2.13). Visibility orderings

for these views are given in Corollary 1.

2.3.2.2 1D Edge-On View

Assume that we have a 1D grid as shown in Figure 2.10. Assume without loss of generality

thatpq � vpu < pq+1 (i.e. that the projection ofvp on theu axis can lie directly onpq,

but must be strictly less thanpq+1). Then we can define a visibility ordering for the 1D

grid:

43

1D Grid
direction of relationship of

view number of cases case vp from grid vp to grid
Edge On: 1 case (Theorem 1) 1* within u1 < vpu < un
Corner On: 2 cases (Corollary 1) 1* L vpu � u1

2* R un � vpu

Table 2.1: The relationship betweenvp and a 1D grid. The cases marked “*” are covered
in Theorem 1 or Corollary 1.

p1 pq vpu pq+1pq-1 pq+2 pn

vp

GL GR

Figure 2.10: A 1D grid showing the location of the view pointvp and point objects
divided into the setsGL andGR.

44

p1 p2 pq vpu pq+1pq-1 pq+2 pn

vp

GRGL

pn-1

P1 P2 Pq-1 Pq+1 Pn-2 Pn-1

+– + + + + +– – – – –

Figure 2.11: A 1D grid with dividing planes added.

Theorem 1 A visibility ordering for a 1D grid withpq � vpu < pq+1 is as follows:

First, divide the grid into the sets:

hGLi = fp1;p2; : : : ;pqg (2.13)

hGRi = fpq+1;pq+2; : : : ;png: (2.14)

Then a visibility ordering for each set is:

hGLi = pq)pq�1) : : :)p2)p1 (2.15)

hGRi = pq+1)pq+2) : : :)pn�1)pn: (2.16)

Proof: Insert dividing planes into the grid as shown in Figure 2.11, where planesPi : 1 �

i � q � 1; q + 1 � i � n � 1 are placed anywhere between pointspi andpi+1. Define

the half-spacesP+
i to be the side of each plane facingvp, and the half-spacesP�

i to be

the side facing away fromvp.

Now consider the points in the setGR: pq+1;pq+2; : : : ;pi�1;pi;pi+1; : : : ;pn�1;pn

(Figure 2.12). For anypi : q + 1 � i < n, by the dividing property of planespi)fpi+1;

pi+2; : : : ;png sincepi 2 P+
i andfpi+1;pi+2; : : : ;png 2 P�

i . Hencepq+1)pq+2) : : :

)pn�1)pn.

And consider the pointspq;pq�1; : : : ;p2;p1. A symmetric argument proves thatpq)

pq�1) : : :)p2)p1. Q.E.D.

45

pq+1 pq+2 pq+3 pi pi+1pi-1 pnpn-1

Pq+1

+ –
Pq+2

+ –
Pi-1

+ –
Pi

+ –
Pi+1

+ –
Pn-2

+ –
Pn-1

+ –
Pq+3

+ –
Pi-2

+ –

Figure 2.12: The right-hand points in the setGR.

p1 pnp2 pn-1vpu

vp

vpu

vp

Figure 2.13:vpu either falls beforep1 or afterpn.

Note that Theorem 1 and its proof do not specify a visibility ordering between setsGL

andGR — there is no such visibility ordering becauseGL 6 kGR andGR 6 kGL. Hence either

GL)GR orGR)GL without effecting visibility.

2.3.2.3 1D Corner-On View

The visibility ordering for the 1D corner-on cases leads to the following simple corollary:

Corollary 1 A visibility ordering for a 1D grid whenvpu � p1 is:

p1)p2) : : :)pn�1)pn: (2.17)

A visibility ordering for a 1D grid whenvpu � pn is:

pn)pn�1) : : :)p2)p1: (2.18)

46

Proof: The corollary follows immediately from Theorem 1.Q.E.D.

2.3.3 2D Visibility Ordering

This section gives the perspective back-to-front (PBTF) visibility ordering for a 2D grid.

First, Section 2.3.3.1 gives some nomenclature which is helpful when discussing 2D grids.

Then Section 2.3.3.2 discusses the possible relationships between a view point and a 2D

grid. These relationships yield three cases:face-on, edge-on, andcorner-onviews of a

grid. The face-on case is the most general; Theorem 2 gives a visibility ordering for this

case in Section 2.3.3.3. Corollaries 2 and 3 then give visibility orderings for the edge-on

and corner-on cases in Sections 2.3.3.4 and 2.3.3.5, respectively.

2.3.3.1 Nomenclature

We use the following nomenclature to refer to the different parts of a 2D grid, as shown

in Figure 2.14. The grid is defined by the unit vectorsu andv, where the grid origin is

in the lower-left corner. Within the grid we use the four directions shown in Figure 2.14;

these are called theedge directionsbecause they give the direction to each edge from the

point of view of the center of the grid. The edge directions are L, R, U, and D, where

� L and R stand for (L)eft and (R)ight and give a direction relative to theu axis, and

� U and D stand for (U)p and (D)own and give a direction relative to thev axis.

Combining these edge directions into pairs we obtain the fourcorner directionsLU, LD,

RU, and RD, which give the direction towards the four corners of the grid.

In general we will deal with a grid of sizen�m, where there aren point objects along

theu axis andm point objects along thev axis. We will usually be interested in a point

object in the interior of the grid; we will refer to this as the pointpq;r.

2.3.3.2 Views of a 2D Grid

Assume that we have a 2D grid as shown in Figure 2.14 and a viewpointvp, and let the

projection ofvp on theuv plane be(vpu;vpv). Then there are three possible views or

relationships of the grid from(vpu;vpv); these are summarized in Table 2.2.

47

2D Grid
direction of relationship of

view number of cases case vp from grid vp to grid
Face On: 1 case (Theorem 2) 1* u1 < vpu < un and

v1 < vpv < vm
Edge On: 4 cases (Corollary 2) 1* L vpu � u1 and

v1 < vpv < vm
2 R un � vpu and

v1 < vpv < vm
3 U u1 < vpu < un and

vm � vpv
4 D u1 < vpu < un and

vpv � v1
Corner On: 4 cases (Corollary 3) 1 LU vpu � u1 and

vm � vpv
2* LD vpu � u1 and

vpv � v1
3 RU un � vpu and

vm � vpv
4 RD un � vpu and

vpv � v1

Table 2.2: The relationship betweenvp and a 2D grid. The cases marked “*” are proved
in Theorem 2 and Corollaries 2 and 3.

48

U

D

L R

u

v

LD

LU

RD

RU

1 q n

m

r pq,r

Figure 2.14: Naming conventions for a 2D grid.

Borrowing terminology from Anderson [4], we classify the views as face-on, edge-on,

and corner-on, where

� a face-onview is when(vpu;vpv) is contained within the grid. A visibility order-

ing for this view is given in Theorem 2.

� An edge-onview is when one coordinate (eithervpu or vpv) lies outside the grid

and the other coordinate lies within the grid. As listed in Table 2.2 there are four

possible edge-on cases, depending on the direction of the viewpoint from the grid.

A visibility ordering for one of these cases is given in Corollary 2. The other cases

are provable by symmetric corollaries. And

� a corner-on view is when both the coordinatesvpu andvpv lie outside the grid.

As listed in Table 2.2 there are four possible corner-on cases, one for each corner

beyond which the viewpoint could lie. A visibility ordering for one of these cases

is given in Corollary 3. The other cases are provable by symmetric corollaries.

49

1 3 q q+1 n
1

3

r-1

r+1

r

m-2

m

GLU

u

v 2 q-1 n-1

2

m-1

n-2

pq,r

GRU

GRDGLD

(vpu , vpv)

Figure 2.15: Grid layout for proof of 2D visibility ordering.

2.3.3.3 2D Face-On View

Assume that we have a 2D grid as shown in Figure 2.15. Assume without loss of generality

that the projection ofvp onto theuv plane is(vpu;vpv), and that(vpu;vpv) is closer to

pq;r than any other point. Then we can define a visibility ordering for the 2D grid:

Theorem 2 A visibility ordering for a 2D grid when, for eachi; j such that1 � i < q; q <

i � n and1 � j < r; r < j � m we havej(vpu;vpv) � pq;rj � j(vpu;vpv) � pi;jj, is

as follows.

First, divide the grid into the sets:

hGLDi = fpi;j : 1 � i � q; 1 � j � rg

50

hGRDi = fpi;j : q + 1 � i � n; 1 � j � rg

hGRUi = fpi;j : q + 1 � i � n; r + 1 � j � mg

hGLUi = fpi;j : 1 � i � q; r + 1 � j � mg

Then a visibility ordering for each set is:

hGLDi = hhpi;j : q � i � 1i : r � j � 1i or dual

hGRDi = hhpi;j : q + 1 � i � ni : r � j � 1i or dual

hGRUi = hhpi;j : q + 1 � i � ni : r + 1 � j � mi or dual

hGLUi = hhpi;j : q � i � 1i : r + 1 � j � mi or dual

Proof: We shall show the visibility ordering for setGLD; symmetric arguments demon-

strate the visibility ordering for setsGRD; GRU, andGLU.

Consider the setGLD as shown in Figure 2.16. LetGLD be broken into subsetsG1; G2;

: : : ; Gr�1; Gr where subsetGj is composed of all the grid points on rowj:

Gj =
q[

i=1

pi;j: (2.19)

Place horizontal dividing planesP1; P2; : : : ; Pr�2; Pr�1 between each row of grid points

so that planePj divides setGj from setGj+1. Let the half spacesP+
j be the side of each

plane facingvp, and the half spacesP�

j be the side facing away fromvp.

For any subsetGj : 1 � j � r; we haveGj � P+
j�1 andfGj�1; Gj�2; : : : ; G1g �

P�

j�1. HenceGj)fGj�1; Gj�2; : : : ; G1g, and thus we have

Gr)Gr�1) : : :)G2)G1: (2.20)

Now consider each subsetGj. Corollary 1 gives the visibility ordering

pq;j)pq�1;j) : : :)p2;j)p1;j: (2.21)

This combined with Equation 2.20 gives us the overall visibility ordering for setGLD:

hhpi;j : q � i � 1i : r � j � 1i: (2.22)

51

1 2 3 qq-1
1

2

3

r-2

r-1

r

q-2
G1

G2

G3

Gr-2

Gr-1

Gr

(vpu , vpv)

P1
+

–

P2
+

–

P3
+

–

Pr-3
+

–

Pr-2
+

–

Pr-1
+

–

u

v

Figure 2.16: The visibility ordering for the setGLD.

52

This argument has proved the visibility ordering for setGLD. Symmetric arguments

prove the ordering for setsGRD; GRU, andGLU. Q.E.D.

Note that by placing the cutting planes vertically instead of horizontally we can obtain

thedualvisibility ordering

hhpi;j : r � j � 1i : q � i � 1i: (2.23)

Also note that similar to Theorem 1, Theorem 2 and its proof do not specify a visibility

ordering between the setsGLD; GRD; GRU, andGLU — there is no such visibility ordering

because the sets do not obscure each other with respect tovp.

2.3.3.4 2D Edge-On View

Assume that we have a 2D grid, and assume that(vpu;vpv) is to the left of the grid, as

shown in Figure 2.17. Furthermore assume thatvpv is closer top1;r than any other grid

point. Then we can define a visibility ordering for the 2D grid:

Corollary 2 A visibility ordering for a 2D grid whenvpu � u1 and for eachj such that

1 � j < r; r < j � m we havejvpv � p1;rj � jvpv � p1;jj, is as follows.

First, divide the grid into the sets:

hGUi = fpi;j : 1 � i � n; r � j � mg (2.24)

hGDi = fpi;j : 1 � i � n; 1 � j � r � 1g (2.25)

Then a visibility ordering for each set is:

hGUi = hhpi;j : 1 � i � ni : r � j � mi or dual (2.26)

hGDi = hhpi;j : 1 � i � ni : r � 1 � j � 1i or dual (2.27)

Proof: Corollary 2 follows immediately from the visibility ordering of the setsGRU and

GRD given in Theorem 2.Q.E.D.

53

u

v

GD

GU

1 2 3 4 5 n-1 n
1

2

r-1

r

r+1

m

(vpu , vpv)

Figure 2.17: The viewpoint is beyond the “L” edge of the grid. This is case 1 of the
edge-on view from Table 2.2.

54

u

v

(vpu , vpv)
1 2 3 n

1

2

3

m

Figure 2.18: The viewpoint is beyond the “LD” corner of the grid. This is case 2 of the
corner-on view from Table 2.2.

2.3.3.5 2D Corner-On View

Assume that we have a 2D grid, and assume that(vpu;vpv) is beyond the LD corner, as

shown in Figure 2.17. Then we can define a visibility ordering for the 2D grid:

Corollary 3 A visibility ordering for a 2D grid whenvpu � u1 andvpv � v1 is:

hhpi;j : 1 � i � ni : 1 � j � mi or dual (2.28)

Proof: Corollary 3 follows immediately from the visibility ordering of the setGRU given

in Theorem 2.Q.E.D.

2.3.4 3D Visibility Ordering

This section gives the perspective back-to-front (PBTF) visibility ordering for a 3D grid.

First, Section 2.3.4.1 gives some nomenclature which is helpful when discussing 3D grids.

Then Section 2.3.4.2 discusses the possible relationships between a view point and a 3D

grid. These relationships yield four cases:volume-on, face-on, edge-on, andcorner-on

55

views of a grid. The volume-on case is the most general; Theorem 3 gives a visibility

ordering for this case in Section 2.3.4.3. Corollaries 4, 5, and 6 then give visibility order-

ings for the face-on, edge-on, and corner-on cases in Sections 2.3.4.4, 2.3.4.5, and 2.3.4.6,

respectively.

2.3.4.1 Nomenclature

We use the following nomenclature to refer to the different parts of a 3D grid; in general

this nomenclature follows that of Samet [88]. A 3D grid is shown in Figure 2.19. The

grid is defined by the unit vectorsu, v, andw where the grid origin is the lower-left

corner; this is similar to taking the 2D grid from Figure 2.14 and extruding it out in thew

direction. Within the grid we indicate a direction by using the six “primitive” directions

shown in Figure 2.19; these are called theface directionsbecause they give the direction

of each face from the point of view of the center of the cube. The face directions are L, R,

U, D, F, and B, where

� L and R stand for (L)eft and (R)ight and give a direction relative to theu axis,

� U and D stand for (U)p and (D)own and give a direction relative to thev axis, and

� F and B stand for (F)ront and (B)ack and give a direction relative to thew axis.

Combining these face directions into pairs we obtain the 12edge directionsLU, LD,

LF, LB, RU, RD, RF, RB, UF, UB, DF, and DB, which give the direction towards the

12 edges of the grid. And combining the face directions into triples we obtain the eight

corner directionsLUF, LUB, LDF, LDB, RUF, RUB, RDF, and RDB, which give the

direction towards the eight corners of the grid.

In general we will deal with a grid of sizen�m� p, where there aren point objects

along theu axis,m point objects along thev axis, andp point objects along thew axis.

We will usually be interested in a point object in the interior of the grid; we will refer to

this as the pointpq;r;s.

56

U

D

L R

u RDF

r
pq,r,s

F

B

v
w

q

s

p

n

m

1

RDB

RUB

RUF

LUB

LUF

LDF

LDB

Figure 2.19: Naming conventions for a 3D grid.

2.3.4.2 Views of a 3D Grid

Assume that we have a 3D grid as shown in Figure 2.19 and a viewpointvp, and let the

location ofvp expressed theuvw coordinate system be(vpu;vpv;vpw). Then there are

four possible views or relationships of the grid from(vpu;vpv;vpw); these are summa-

rized in Table 2.3.

Extending the terminology from our 2D grid, we classify the views as volume-on,

face-on, edge-on, and corner-on, where

� avolume-onview is when(vpu;vpv;vpw) is contained within the grid. A visibility

ordering for this view is given in Theorem 3.

� A face-onview is when one coordinate ofvp lies outside the grid and the other two

still lie inside the grid; in this situation the viewpoint is looking straight at a face of

the grid. As listed in Table 2.3 there are six possible face-on cases, depending on

the direction of the viewpoint from the grid. A visibility ordering for one of these

cases is given in Corollary 4; the other cases are provable by symmetric corollaries.

57

3D Grid
direction of relationship of

view number of cases case vp from grid vp to grid
Volume On: 1 case (Theorem 3) 1* u1 < vpu < un and

v1 < vpv < vm and
w1 < vpw < wp

Face On: 6 cases (Corollary 4) 1 L vpu � u1 and
v1 < vpv < vm and
w1 < vpw < wp

2 R un � vpu and
v1 < vpv < vm and
w1 < vpw < wp

3 U u1 < vpu < un and
vm � vpv and
w1 < vpw < wp

4 D u1 < vpu < un and
vpv � v1 and
w1 < vpw < wp

5* F u1 < vpu < un and
v1 < vpv < vm and

vpw � w1

6 B u1 < vpu < un and
v1 < vpv < vm and

wp � vpw
Edge On: 12 cases (Corollary 5) 1 LU vpu � u1 and

vm � vpv and
w1 < vpw < wp

Table 2.3 continued on next page

Table 2.3: The relationship betweenvp and a 3D grid. The cases marked “*” are covered
in Theorem 3 and Corollaries 4, 5 and 6.

58

Table 2.3 continued from previous page

direction of relationship of
view number of cases case vp from grid vp to grid

2 LD vpu � u1 and
vpv � v1 and
w1 < vpw < wp

3 LF vpu � u1 and
v1 < vpv < vm and

vpw � w1

4 LB vpu � u1 and
v1 < vpv < vm and

wp � vpw
5 RU un � vpu and

vm � vpv and
w1 < vpw < wp

6 RD un � vpu and
vpv � v1 and
w1 < vpw < wp

7* RF un � vpu and
v1 < vpv < vm and

vpw � w1

8 RB un � vpu and
v1 < vpv < vm and

wp � vpw
9 UF u1 < vpu < un and

vm � vpv and
vpw � w1

10 UB u1 < vpu < un and
vm � vpv and
wp � vpw

Table 2.3 continued on next page

59

Table 2.3 continued from previous page

direction of relationship of
view number of cases case vp from grid vp to grid

11 DF u1 < vpu < un and
vpv � v1 and
vpw � w1

12 DB u1 < vpu < un and
vpv � v1 and
wp � vpw

Corner On: 8 cases (Corollary 6) 1 LUF vpu � u1 and
vm � vpv and
vpw � w1

2 LUB vpu � u1 and
vm � vpv and
wp � vpw

3 LDF vpu � u1 and
vpv � v1 and
vpw � w1

4 LDB vpu � u1 and
vpv � v1 and
wp � vpw

5 RUF un � vpu and
vm � vpv and
vpw � w1

6 RUB un � vpu and
vm � vpv and
wp � vpw

7* RDF un � vpu and
vpv � v1 and
vpw � w1

8 RDB un � vpu and
vpv � v1 and
wp � vpw

60

u

r
pq,r,s

v
w

q

s

p

n

m

1

GRUB

(vpu,vpv,vpw)

GRDB

GRDF

GRUF

GLUB

GLUF

GLDF

GLDB

Figure 2.20: Grid layout for proof of 3D visibility ordering.

� An edge-onview is when two coordinates ofvp lie outside the grid and the third

coordinate lies inside the grid; in this casevp is located beyond a grid edge. As

listed in Table 2.3 there are 12 possible edge-on cases. A visibility ordering for one

of these cases is given in Corollary 5; the other cases are provable by symmetric

corollaries. And

� a corner-onview is when all three coordinates ofvp lie outside the grid; for this

view vp lies beyond a grid corner. As listed in Table 2.3 there are eight possible

corner-on cases. A visibility ordering for one of these cases is given in Corollary 6;

the other cases are provable by symmetric corollaries.

2.3.4.3 3D Volume-On View

Assume that we have a 3D grid as shown in Figure 2.20. Assume without loss of generality

thatvp = (vpu;vpv;vpw) is closer topq;r;s than any other point. Then we can define a

visibility ordering for the 3D grid:

61

Theorem 3 A visibility ordering for a 3D grid when, for each1 � i < q; q < i � n; 1 �

j < r; r < j � m; 1 � k < s; s < k � p we havej(vpu;vpv;vpw) � pq;r;sj �

j(vpu;vpv;vpw)� pi;j;kj, is as follows.

First, divide the grid into the sets:

hGLDFi = fpi;j;k : 1 � i � q; 1 � j � r; 1 � k � sg (2.29)

hGRDFi = fpi;j;k : q + 1 � i � n; 1 � j � r; 1 � k � sg (2.30)

hGLUFi = fpi;j;k : 1 � i � q; r + 1 � j � m; 1 � k � sg (2.31)

hGRUFi = fpi;j;k : q + 1 � i � n; r + 1 � j � m; 1 � k � sg (2.32)

hGLDBi = fpi;j;k : 1 � i � q; 1 � j � r; s+ 1 � k � pg (2.33)

hGRDBi = fpi;j;k : q + 1 � i � n; 1 � j � r; s+ 1 � k � pg (2.34)

hGLUBi = fpi;j;k : 1 � i � q; r + 1 � j � m; s+ 1 � k � pg (2.35)

hGRUBi = fpi;j;k : q + 1 � i � n; r + 1 � j � m; s + 1 � k � pg (2.36)

Then a visibility ordering for each set is:

hGLDFi = hhhpi;j;k : q � i � 1i : r � j � 1i : s � k � 1i

or duals (2.37)

hGRDFi = hhhpi;j;k : q + 1 � i � ni : r � j � 1i : s � k � 1i

or duals (2.38)

hGLUFi = hhhpi;j;k : q � i � 1i : r + 1 � j � mi : s � k � 1i

or duals (2.39)

hGRUFi = hhhpi;j;k : q + 1 � i � ni : r + 1 � j � mi : s � k � 1i

or duals (2.40)

hGLDBi = hhhpi;j;k : q � i � 1i : r � j � 1i : s+ 1 � k � pi

or duals (2.41)

hGRDBi = hhhpi;j;k : q + 1 � i � ni : r � j � 1i : s+ 1 � k � pi

or duals (2.42)

hGLUBi = hhhpi;j;k : q � i � 1i : r + 1 � j � mi : s+ 1 � k � pi

62

or duals (2.43)

hGRUBi = hhhpi;j;k : q + 1 � i � ni : r + 1 � j � mi : s+ 1 � k � pi

or duals (2.44)

Proof: We shall show the visibility ordering for setGLDF; symmetric arguments demon-

strate the visibility ordering for the setsGRDF, GLUF, GRUF, GLDB, GRDB, GLUB, and

GRUB.

Consider the setGLDF as shown in Figure 2.21. LetGLDF be broken into subsets

G1; G2; : : : ; Gr�1; Gr, where subsetGj is composed of all the grid points on slicej:

Gj =
q[

i=1

s[
k=1

pi;j;k: (2.45)

Place horizontal dividing planesP1; P2; : : : ; Pr�2; Pr�1 between each slice of grid points

so that planePj divides setGj from setGj+1. Let the half spacesP+
j be the side of each

plane facingvp, and the half spacesP�

j be the side facing away fromvp.

For any subsetGj : 1 � j � r; we haveGj � P+
j�1 andfGj�1; Gj�2; : : : ; G1g �

P�

j�1. HenceGj)fGj�1; Gj�2; : : : ; G1g, and thus we have

Gr)Gr�1) : : :)G2)G1: (2.46)

Now consider each subsetGj. Corollary 3 gives the visibility ordering

hhpi;j;k : q � i � 1i : s � k � 1i: (2.47)

This combined with Equation 2.46 gives us the overall visibility ordering for setGLDF:

hhhpi;j;k : q � i � 1i : s � k � 1i : r � j � 1i: (2.48)

This argument has proved the visibility ordering for setGLDF. Symmetric arguments

prove the ordering for setsGRDF, GLUF, GRUF, GLDB, GRDB, GLUB, andGRUB. Q.E.D.

Note that by placing the cutting planes in a different orientation, as well as by changing

the orientation of the slice-by-slice cutting planes from Corollary 3, we could end up with

63

1 2

2

q-1 q 1
2

s-1
s

r-2

r

pq,r,s

(vpu,vpv,vpw)

P1
+
–

P2
+
–

Pr-2
+
–

+
–Pr-1

u

v
w

G1

G2

G3

Gr-2

Gr-1

Gr

3

r-1

Figure 2.21: The visibility ordering for the setGLDF.

any of thedualvisibility orderings forGLDF:

hhhpi;j;k : q � i � 1i : s � k � 1i : r � j � 1i
or hhhpi;j;k : q � i � 1i : r � j � 1i : s � k � 1i
or hhhpi;j;k : r � j � 1i : q � i � 1i : s � k � 1i
or hhhpi;j;k : r � j � 1i : s � k � 1i : q � i � 1i
or hhhpi;j;k : s � k � 1i : q � i � 1i : r � j � 1i
or hhhpi;j;k : s � k � 1i : r � j � 1i : q � i � 1i

(2.49)

Furthermore, as Corollary 3 itself has two visibility orderings, the overall ordering could

even change within each slice.

Also note that like Theorem 1 and Theorem 2, Theorem 3 does not specify a visibility

ordering between the octant setsGLDF, GRDF, GLUF, GRUF, GLDB, GRDB, GLUB, and

GRUB— there is no such visibility ordering because the sets do not obscure each other

with respect tovp.

64

m

1

r

u q
w

vp n

pq;r;1

U

R

F

(vpu;vpv; 1)

p

v

1

GRU

GLD GRD

GLU

Figure 2.22: The viewpoint is beyond the “F” face of the 3D grid. This is case 5 of the
face-on view from Table 2.3. The visible grid faces are labeled.

2.3.4.4 3D Face-On View

In a face-on view, one coordinate ofvp lies outside the grid and the other two coordinates

lie inside the grid. For Corollary 4, assume that we have a 3D grid, and assume thatvp

is in front of the grid, as shown in Figure 2.22. Furthermore assume that the projection of

vp onto the front face of the 3D grid(vpu;vpv; 1) is closer topq;r;1 than any other grid

point. Then we can define a visibility ordering for the 3D grid:

Corollary 4 A visibility ordering for a 3D grid whenvpw � w1 and for each1 � i <

q; q < i � n; 1 � j < r; r < j � m we havej(vpu;vpv; 1)� pq;r;1j � j(vpu;vpv; 1)�

pi;j;1j is as follows.

First, divide the grid into the sets:

hGLUi = fpi;j;k : 1 � i � q; r + 1 � j � m; 1 � k � pg (2.50)

hGLDi = fpi;j;k : 1 � i � q; 1 � j � r; 1 � k � pg (2.51)

65

hGRUi = fpi;j;k : q + 1 � i � n; r + 1 � j � m; 1 � k � pg (2.52)

hGRDi = fpi;j;k : q + 1 � i � n; 1 � j � r; 1 � k � pg (2.53)

Then a visibility ordering for each set is:

hGLUi = hhhpi;j;k : q � i � 1i : r + 1 � j � mi : 1 � k � pi

or duals (2.54)

hGLDi = hhhpi;j;k : q � i � 1i : r � j � 1i : 1 � k � pi

or duals (2.55)

hGRUi = hhhpi;j;k : q + 1 � i � ni : r + 1 � j � mi : 1 � k � pi

or duals (2.56)

hGRDi = hhhpi;j;k : q + 1 � i � ni : r � j � 1i : 1 � k � pi

or duals (2.57)

Proof: Corollary 4 follows immediately from the visibility ordering of the setsGLUB,

GLDB, GRUB, andGRDB given in Theorem 3.Q.E.D.

2.3.4.5 3D Edge-On View

In an edge-on view, two coordinates ofvp lie outside the 3D grid and one coordinate lies

inside the grid, sovp projects onto an edge of the grid. For Corollary 5, assume that we

have a 3D grid, and assume thatvp is to the right and in front of the grid (so that it projects

onto the RF grid edge) as shown in Figure 2.23. Furthermore assume that the projection

of vp onto the RF edge(n;vpv; 1) is closer topn;r;1 than any other grid point. Then we

can define a visibility ordering for the 3D grid:

Corollary 5 A visibility ordering for a 3D grid whenun � vpu, vpw � w1, and for each

1 � j < r; r < j � m we havej(n;vpv; 1)�pn;r;1j � j(n;vpv; 1)�pn;j;1j is as follows.

First, divide the grid into the sets:

hGUi = fpi;j;k : 1 � i � n; r + 1 � j � m; 1 � k � pg (2.58)

hGDi = fpi;j;k : 1 � i � n; 1 � j � r; 1 � k � pg (2.59)

66

p

GU

GD

vp

1

m

r

u n

v

UF

RF

RU

(n;vpv; 1)
pq;r;1

RB

UB

LU

LF

DF

RD

1
w

Figure 2.23: The viewpoint is beyond the “RF” edge of the 3D grid. This is case 7 of the
edge-on view from Table 2.3. The visible grid edges are labeled.

Then a visibility ordering for each set is:

hGUi = hhhpi;j;k : n � i � 1i : r + 1 � j � mi : 1 � k � pi

or duals (2.60)

hGDi = hhhpi;j;k : n � i � 1i : r � j � 1i : 1 � k � pi

or duals (2.61)

Proof: Corollary 5 follows immediately from the visibility ordering of the setsGLUB and

GLDB given in Theorem 3.Q.E.D.

2.3.4.6 3D Corner-On View

In a corner-on view, all three coordinates ofvp lie outside the 3D grid, and sovp is

beyond a grid corner. For Corollary 6, assume that we have a 3D grid, and assume that

vp is beyond the RDF corner, as shown in Figure 2.24. Then we can define a visibility

ordering for the 3D grid:

67

pn;1;1

p

1
v

nu

m

G

RDF
LDF

RUBLUB

vp

LUF

RUF

RDB

1
w

Figure 2.24: The viewpoint is beyond the “RDF” corner of the 3D grid. This is case 7 of
the corner-on view from Table 2.3. The visible grid corners are labeled.

68

Corollary 6 A visibility ordering for a 3D grid whenun � vpu, vpv � v1, andvpw �

w1 is

hhhpi;j;k : n � i � 1i : 1 � j � mi : 1 � k � pi or duals: (2.62)

Proof: Corollary 6 follows immediately from the visibility ordering of the setGLUB given

in Theorem 3.Q.E.D.

2.3.5 Discussion

This section concludes the proof of the PBTF visibility ordering.

The proof is given in an undefined space, which we can assume is equivalent to world

space. However, many rendering algorithms operate in either eye space or perspective

space. As discussed in Section 3.3.1, eye space is arigid body transformationof world

space, and thus preserves parallelism of lines, length of lines, and angles between lines.

The splatting algorithm operates in perspective space. As discussed in [74, page 361], the

perspective transformation maps straight lines into straight lines and planes into planes.

Because planes and lines are preserved under both transformations, the cutting planes on

which the proof is based have the same function in both eye space and perspective space as

they do in world space. Thus, the proof holds in world space, eye space, and perspective

space.

As given, the proof yields a front-to-back ordering of the grid. As discussed in Sec-

tion 2.3.1, splatting and other list-priority or painter’s algorithms can operate in either a

front-to-back or back-to-front order, depending on how the objects are composited into

the image plane. The given front-to-back ordering can be trivially reversed to yield an

equivalent back-to-front ordering.

2.4 Results

Figures 2.25–2.27 show a volumetric dataset rendered with the splatting algorithm dis-

cussed in Chapter 1. The dataset is a60�60�60 hollow cube which contains 19K splats.

Alternate10 � 10 � 10 sub-cubes are colored either red or white to create a volumetric

69

checkerboard effect. The dataset is viewed with a perspective projection; the viewing

parameters are identical for each figure.

In Figure 2.25 the voxels are visited with the BTF visibility ordering. This shows a

large visibility error in the upper part of the cube. The reason for this error is that the

outermost loop of the visibility ordering (see Figure 2.1) renders from the bottom of the

cube towards the top. This can be seen in the animation of the rendering in the lower

part of Figure 2.25. While the bottom half of the cube is being rendered, the scanlines

from the back face are renderedabovethe scanlines from the front face, but while the top

half of the cube is being rendered, the scanlines from the back face are renderedbelow

the scanlines from the front face. The lower row of the animation shows this error — the

scanlines from the back face are overwriting the already-drawn scanlines from the front

face. This is the opposite of what is desired, and it is caused by the perspective distortion.

Figure 2.25 shows that the BTF visibility ordering is incorrect for this perspective view.

In Figure 2.26 the voxels are visited using the Westover BTF visibility ordering. This

shows a visibility error in the right-hand side of the figure. This error is similar to the

BTF error shown in Figure 2.25. As the animation shows, it occurs because the WBTF

ordering chooses to render from left to right in the outermost loop of the visibility ordering

(see Figure 2.3). This results in incorrect visibility in the right-hand side of the cube, again

because the scanlines from the back face are overwriting the already-drawn scanlines from

the front face. Figure 2.26 shows that the WBTF visibility ordering is incorrect for this

perspective view.

In Figure 2.27 the voxels are visited using the Perspective BTF visibility ordering.

This does not show a visibility error. The animated sequence shows why — the algorithm

chooses what is essentially a Westover-type visibility ordering, but it chooses this ordering

separately for the two halves of the cube that lie to either side of the projection of the eye

point. Thus the back scanlines never overwrite the front scanlines, and no visibility error

occurs.

70

Figure 2.25: (upper) A cube rendered with the BTF visibility ordering. Note the visibility
error along the top of the cube. (lower) An animation of the cube being rendered.

71

Figure 2.26: (upper) A cube rendered with the WBTF visibility ordering. Note the visi-
bility error along the side of the cube. (lower) An animation of the cube being rendered.

72

Figure 2.27: (upper) A cube rendered with the PBTF visibility ordering. (lower) An
animation of the cube being rendered.

73

2.5 Summary and Future Work

This chapter has presented the Perspective BTF visibility ordering, and given a proof of

correctness for the technique. It has compared the PBTF algorithm to two well-know vis-

ibility ordering methods commonly used with splatting: the Back-to-Front and the West-

over Back-to-Front methods. The chapter has demonstrated that there exist perspective

views which the PBTF visibility ordering is able to render correctly, but the BTF and the

WBTF visibility orderings are not able to render correctly.

When viewing a scene with a perspective projection, the standard BTF visibility or-

dering easily shows visibility errors similar to Figure 2.25. Because it has more ways to

choose the visibility ordering, the WBTF method is more robust, and does not show vis-

ibility errors for many viewpoints which the BTF method is not able to render correctly.

However, as Figures 2.25 and 2.26 demonstrate, there are views which neither method can

render correctly. The PBTF visibility ordering generates correct visibility because it takes

into account the projection of the view point onto the grid, and for each axis visits the

grid in a different order on either side of the projected view point. This gives the PBTF

ordering enough freedom in choosing traversal directions that it is able to compensate for

the perspective distortion.

There are a number of ways in which work presented in this chapter can be extended:

� The PBTF technique could be applied recursively to order a nested hierarchical grid

structure like that discussed by Max [68]. It would be interesting to see if the proof

can be similarly extended.

� Similar proof techniques might yield more insight into why the BTF and WBTF

methods work for orthographic projections but not for perspective projections.

74

CHAPTER 3

AN ANTI-ALIASING TECHNIQUE FOR SPLATTING

3.1 Introduction

As currently implemented (Section 1.2), the splatting algorithm does not correctly render

cases where the volume sampling rate is higher than the image sampling rate (e.g. more

than one voxel maps into a pixel). This situation arises with orthographic projections of

high-resolution volumes, as well as with perspective projections of volumes of any res-

olution. The result is potentially severe spatial and temporal aliasing artifacts. Volume

ray casting and shear-warp algorithms avoid these artifacts by employing reconstruction

kernels which vary in width [54, 76, 80]. Unlike ray casting and shear-warp algorithms,

existing splatting algorithms to not have an equivalent mechanism for avoiding these ar-

tifacts. This chapter proposes such a mechanism, which delivers high-quality splatted

images.

To put the technique in perspective, first Section 3.2 discusses previous work in the

area of anti-aliasing. The method itself is given in Section 3.3, followed by results in

Section 3.4 and a discussion of future work in Section 3.5.

3.2 Previous Work

Aliasing is a fundamental problem in computer graphics, but its basis in the field of signal

processing is well understood. Because the problem is so pervasive, aliasing phenomena

have motivated an enormous quantity of research. This section reviews some of the most

75

important previous work in anti-aliasing. Because of the amount of previous work in this

area, no attempt is made at any sort of complete cataloging. Instead, this section identifies

the broad research categories in the area, and points out a few seminal papers in each

category.

All anti-aliasing methods attempt to solve theanti-aliasing integral. This integral,

which solves the aliasing problem, is:

s(x; y) =
Z
+1

�1

Z
+1

�1

i(u+ x; v + y)f(u; v) du dv; (3.1)

wherei(x; y) is the original image,f(u; v) is the anti-aliasingfilter kernel or point-spread

function, ands(x; y) is the resulting anti-aliased, filtered image. Anti-aliasing techniques

attempt to find accurate and efficient solutions to this integral.

Existing anti-aliasing methods can be broken into two broad categories, depending on

how they try to solve Equation 3.1:analytic techniques, andpoint-sampling techniques.

3.2.1 Analytic Techniques

Analytic techniques solve the anti-aliasing integral using numerical methods. They are

commonly implemented as part of continuous visible surface algorithms, because these

algorithms provide a description of the scene geometry in the required form — usually at

the precision of the machine’s floating-point representation.

An analytic anti-aliasing technique is presented by Crow [22] in one of the earliest

anti-aliasing papers. He describes the aliasing problem in terms of signal processing the-

ory, and suggests several anti-aliasing filter kernels. He also gives techniques to integrate

anti-aliasing with hidden surface computation, and how to only apply the filtering where

necessary (such as along surface edges, silhouette edges, and when rendering a polygon

which is smaller than a pixel). In another early paper, Catmull [9] performs polygon clip-

ping for all the polygons that lie under a pixel, and then numerically calculates the areas

of the visible polygons. His technique is equivalent to filtering the scene geometry with a

box kernel.

Feibush et al. [28] give a method which exploits the symmetry inherent in a radially

symmetric filter to efficiently implement the convolution in Equation 3.1 with a 2D lookup

76

table. This technique allows arbitrarily complicated kernels without an increase in ren-

dering time. Catmull [10] gives an algorithm which is similar to his earlier technique [9],

but uses the Feibush et al. method to efficiently utilize a higher-quality Gaussian filter.

Turkowski [92] gives an even more efficient method that only requires a 1D lookup ta-

ble. And Abram et al. [1] give a similar table-lookup technique which also re-orders the

convolution so that the filtered pixels are computed in object-order instead of image-order.

Because numerically solving Equation 3.1 is complicated, most analytical anti-alias-

ing techniques limit scene geometry to simple primitives like polygons and line segments.

Furthermore, the polygons are usually flat-shaded or at most have some form of interpo-

lated shading. In general, analytically filtering the patterns from texture mapping is too

complex, although Norton et al. [75] give just such an algorithm that operates in the fre-

quency domain. The usefulness of this technique is limited by the need to describe the

texture patterns by a truncated Fourier series, however.

Some methods calculate the analytical integral where it is easy to do so (such as along

a silhouette edge) and approximate the integral where it is difficult to calculate analytically

(such as when there are many overlapping polygon fragments under one pixel). One such

method is thea-buffer technique, first described by Carpenter [8]. This method replaces

the complicated pixel fragment visibility calculations of Catmull [9]. Instead discrete

approximations of the pixel fragments are stored in bit masks, which afford very efficient

computations by bitwise operations. Fiume et al. [29] give a similar algorithm, which

uses a lookup table of subpixel coverage masks to calculate an approximate box filtering

of polygon edges. However, the method does not always calculate the correct subpixel

visibility, and so the filtering quality varies.

3.2.2 Point-Sampling Techniques

Many popular visible surface algorithms, such as ray-tracing or z-buffering, only provide

point samples of the projected image, and therefore do not provide enough information

to attempt a numerical solution to the anti-aliasing integral. Also, when texture mapping

from a discrete texture, by definition discrete texture samples are all that are available.

77

However, Equation 3.1 can still be estimated by point samples. This is the basis of point-

sampling anti-aliasing techniques.

3.2.2.1 Texture Mapping

The aliasing problem is very acute in texture mapping, especially on polygons viewed with

a perspective projection that disappear into the horizon. Anti-aliasing is considered from

the very first work on texture mapping [47, page 305]. Because aliasing is so prevalent,

almost all texture mapping implementations include anti-aliasing considerations. Texture-

mapping anti-aliasing techniques can be broken into two categories:direct convolution,

andprefiltering.

Direct Convolution: These techniques center an anti-aliasing filter kernel on each pixel

and then convolve the kernel with those texture samples that lie under the kernel’s foot-

print. This results in very accurate but expensive filtering. Feibush et al. [28] give the

general technique. Texture points are transformed into screen space and filtered with an

arbitrary radially symmetric kernel. The technique of Perny et al. [79] is similar. They

treat each inverse-transformed pixel as an ellipse in texture space, and use a windowed

sinc function as a kernel.

Greene and Heckbert [38] and Heckbert [44] give theelliptical weighted averagefilter

technique. This also treats inverse-transformed pixels as ellipses in texture space, but

unlike Feibush et al. and Perny et al. [28, 79] transforms the whole filter kernel to texture

space and does the convolution there. They recommend a Gaussian kernel, but because

the filter is implemented with a look-up table any kernel shape is supported.

Prefiltering: The direct convolution techniques given above are accurate, but they are

expensive. For perspective images, particularly a texture mapped polygon that disappears

into the horizon, the number of texture samples that must be filtered to calculate the color

of one screen pixel can number in the thousands [43]. When a texture map is used many

times in an image (either because it is mapped to many items or because it is tiled across

78

a surface), it makes sense to prefilter the texture map, so that fewer texture samples are

required to shade a pixel.

Williams [102] prefilters the texture into a pyramid data structure called amip-map,

where successive pyramid levels are1=4th the size of previous levels. This allows con-

stant-time integrations across square regions of the texture map. This was generalized by

Crow [24], who prefilters the texture into asummed area table, where each table entry is

the sum of the rectangular texture region below and to the left of the entry. This allows

constant-time integrations across rectangular regions of the texture map. Glassner [35]

extends summed-area tables in two ways. First, he proposes using additional tables which

hold the sums of other shapes besides rectangles. This allows tighter bounding shapes than

axially-aligned rectangles at the cost of the additional storage for multiple summed area

tables. Second, he gives a method of approximating the pixel’s preimage to an arbitrary

degree of precision. This improves the quality of the filtering, but no longer texture maps

each pixel in constant time.

With this exception all the above techniques texture each pixel in constant time. How-

ever, they are all equivalent to a box filter kernel, so the filtering quality is not as high as

the more expensive direct convolution methods.

Heckbert [42] gives another extension of summed-area tables: he shows how the tech-

nique can be generalized, through repeated integration of the texture, to yield all the b-

spline kernels (box, triangle, quadratic, cubic, and so forth). This results in higher-quality

constant-time filtering, but is still limited to rectangular regions of the texture map.

3.2.2.2 Supersampling

Thesupersamplingtechniques address the aliasing problem by calculating an intermedi-

ate image at a higher resolution than the final image, and then forming the final image

by some sort of averaging operation on the intermediate image. Unlike the other anti-

aliasing techniques discussed above, supersampling can address all forms of aliasing in

an image: both jagged edges and aliased textures. There have been several supersampling

techniques:

79

Regular Supersampling: Simply increasing the sampling rate reduces but does not solve

the aliasing problem, and it greatly increases the expense of rendering an image. In a

comparison study Crow [23] found that analytic prefiltering algorithms [9, 22] had better

performance than several different types of supersampling.

Adaptive Supersampling: Supersampling is not only expensive, but for typical images it

is only really needed for a small fraction of the pixels. Adaptive supersampling techniques

attempt to detect where supersampling is needed and only take additional samples at these

locations. Whitted [100] first described the technique in the context of ray tracing.

Stochastic Sampling: Instead of taking the additional samples on a regular grid, these

techniques take them on a grid which has been stochastically distributed. This turns what

would otherwise be high-frequency aliasing patterns into incoherent noise, while not hav-

ing much of an effect on the low-frequency image content. Because incoherent noise is

not very noticeable to the human visual system and because supersampling techniques

address all forms of aliasing, to date stochastic sampling has been the most generally

successful anti-aliasing technique. It was first described by Cook [18] in the context of

distributed ray-tracing, as well as by Dipp´e and Wold [25]. Lee et al. [56] introduce the

concept ofstratified sampling, where sample positions are calculated and the samples are

weighed on the basis of a local estimate of scene variance. And Cook et al. [19] describe

a system which uses stochastic sampling with a z-buffer.

3.3 The Anti-Aliasing Technique

This section describes the splatting-based anti-aliasing method. Section 3.3.1 describes

the different spaces used in the rest of the chapter, and Section 3.3.2 describes why anti-

aliasing is needed for volume rendering algorithms. Section 3.3.3 develops an expression

(Equation 3.7) which, if satisfied by a given volume rendering algorithm, indicates that

the algorithm will not contain the aliasing artifacts that arise from the resampling phase

of the rendering process. The anti-aliasing method itself is described in Section 3.3.4.

80

Section 3.3.5 shows that the method satisfies the equation developed in Section 3.3.3, and

consequently argues that the method is correct.

3.3.1 The Different Spaces

World space(xw; yw; zw) is the space in which the volume raster is defined. In a viewing

calculation, world space is first transformed intoeye space(xe; ye; ze). This is accom-

plished by concatenating a transformation matrix with a rotation matrix; the result is that

the eye point is at(0; 0; 0) and is looking down the positive z-axis. Such a transformation

can be specified as 2
6664
r11 r12 r13 0
r21 r22 r33 0
r31 r32 r33 0
t1 t2 t3 1

3
7775 ; (3.2)

wherer11–r33 specifies the rotation andt1–t3 specifies the translation. Note that because

the upper3� 3 Jacobian submatrix is orthogonal, this is arigid body transformationand

therefore preserves parallelism of lines, length of lines, and angles between lines [30, page

207].

For the purpose of this chapter the most important property of this transformation is

that, when going from world to eye space, the sample spacing of the volume raster is

preserved. This means that if we give an argument that depends upon the uniformity of

the sample spacing, this argument can be made in either world or eye space.

Perspective space(xp; yp; zp) is the eye space after a perspective transform. It can be

written as

xp =
�
D

h

�
�
xe
ze

(3.3)

yp =
�
D

h

�
�
ye
ze

(3.4)

zp = F

1�D=ze
F �D

!
; (3.5)

whereD is the distance to the near clipping plane,F is the distance to the far clipping

plane, andh is one-half the dimension of the viewing plane (see Figure 3.1). Here we are

assuming a square viewport, and that the near clipping plane and the viewing plane are

coincident. This notation follows Watt and Watt [96].

81

D

F

h

eye
xe±

+ye

-ye

+ze

Figure 3.1: Specification of the viewing frustum. The x-axis goes into and out of the page.

Note that the perspective transformation is non-linear. When implemented, it is usu-

ally factored into a linear part (implemented with a matrix multiplication as part of the

rendering pipeline) and a non-linear part (implemented by the perspective division). This

space is also calledscreen spaceor device space.

3.3.2 The Need for Anti-Aliasing in Volume Rendering

The process of volume rendering is based on the integration (or composition), along an

integration grid, of the volume raster (Figure 3.2). This integration grid is composed of

sight projectors(or rays) which pass from the eye point, through the view plane, and into

the volume raster. Before this integration can occur, the volume raster has to be recon-

structed and then resampled along the integration grid. This is illustrated in Figure 3.2 for

a perspective view of the volume, where the volume raster is shown as a lattice of dots,

and the integration grid is shown as a series of rays, cast through pixels, which traverse

the volume raster. Figure 3.2a shows the scene in eye space, where the eye is located at

point(0; 0; 0) and is looking down the positive z-axis (denoted+ze). The perspective pro-

jection means the integration grid diverges as it traverses the volume. Figure 3.2b shows

the same scene in perspective space, after perspective transformation and perspective di-

vision. Here the volume raster is distorted according to the perspective transformation,

82

and the integration grid lines are parallel. Because of this the eye is no longer located at a

point, but can be considered the planezp = 0.

The reconstruction and resampling of the volume raster onto the integration grid has

to be done properly to avoid aliasing artifacts. Preferably aliasing is avoided by sampling

above the Nyquist limit, but if this is not possible then aliasing can also be avoided by

low-pass filtering the volume to reduce its frequency content. For an orthographic view

this low-pass filtering must be applied to the entire volume, but for a perspective view

low-pass filtering may only be required for a portion of the volume. This can most easily

be seen in perspective space (Figure 3.2b). Note that there is a distance along the+zp

axis, denotedkp, where the sampling rate of the volume raster and the sampling rate of

the integration grid are the same. Before this point there is less than one voxel per pixel,

and after this point there is more than one voxel per pixel. When there is more than

one voxel per pixel the volume raster can contain higher frequency information than the

integration grid can represent, and so aliasing is possible. In the next section this concept

is developed into an equation.

The same thing is true in eye space (Figure 3.2a). Here there is an equivalent distance

along the+ze axis, denotedk, where the sampling rates of the volume raster and the

integration grid are the same (note that in generalk 6= kp, but the two distances are related

by the perspective transformation). Aliasing artifacts can occur afterk, when the distance

between adjacent rays is greater than one voxel.

Volume ray casting algorithms generally perform the reconstruction in eye space.

They avoid aliasing by employing reconstruction kernels which become larger as the rays

diverge [3, 41, 76, 80]. This provides an amount of low-pass filtering which is proportional

to the distance between the rays. Splatting algorithms generally perform the reconstruc-

tion in perspective space. Unlike ray casting algorithms, existing splatting algorithms do

not have an equivalent mechanism to avoid aliasing. This chapter proposes such a mech-

anism.

83

zp 0=

eye

view plane

volume raster

+ze

k

s

integration grid

s

p

pixels

D

Dp

kp

view plane

pixels

Eye Space

Perspective Space

(a)

(b)

+zp

integration grid

volume raster

Figure 3.2: Resampling the volume raster onto the integration grid. (a) In eye space. (b)
In perspective space.

84

3.3.3 Necessary Conditions to Avoid Aliasing

This section gives the conditions which are necessary for the volume rendering resampling

process to avoid introducing aliasing artifacts into the integration grid samples. Lets be

the volume raster grid spacing (Figure 3.2a), and� = 1=s be the volume raster sampling

rate. The volume raster contains aliasing when either

1. the sampled function is not bandlimited, or

2. the function is bandlimited at frequencyw but the sampling rate� is below the

Nyquist limit: � < 2w.

If the first condition holds then aliasing will be present no matter how large� becomes.

However, if the function is bandlimited atw, then as long as

� � 2w (3.6)

there is no aliasing in the volume raster. Assuming that Equation 3.6 is true, the resam-

pling process needs to resample the volume raster onto the integration grid in a manner

that guarantees that no aliasing is introduced.

Let � represent the sampling frequency of the integration grid. For a perspective pro-

jection the integration grid diverges (Figure 3.2a) and therefore� is a function of distance

along theze axis: � = �(d), whered is the distance. For an orthographic projection�

can still be expressed as a function, but it will have a constant value. As illustrated in

Figure 3.2, atk the sampling rates of the volume raster and the integration grid are the

same:�(k) = �.

The distancek means there are two cases to consider:

Case 1: d < k. This is the case for the portion of the grid in Figure 3.2a beforek. Here

�(d) > �, and if Equation 3.6 holds then�(d) > 2w and there is no aliasing.

Case 2: d � k. This is the case for the portion of the grid in Figure 3.2a afterk. Here

�(d) � �, and so it may be that�(d) < 2w. If this is the case, then the integration

grid will contain an aliased signal onced is large enough.

85

This argument shows that, assuming Equation 3.6, volume rendering algorithms do not

have to perform anti-aliasing as long as Case 1 holds (before the distancek is reached).

However, once Case 2 holds (afterk is reached), to avoid aliasing it is necessary to low-

pass filter the volume raster. Ideally the amount of this filtering is a function ofd2, and

reduces the highest frequency in the volume raster fromw to ~w(d). To avoid aliasing there

must be enough low-pass filtering so that

�(d) � 2 ~w(d): (3.7)

If true, this equation indicates that all the resampling occurs above the Nyquist limit. If

it can be shown to be true for a particular volume rendering technique, then the equation

demonstrates that the technique does not introduce aliasing artifacts when resampling

from the volume raster onto the integration grid.

3.3.4 An Anti-Aliasing Method for Splatting

As mentioned in Section 3.3.2 above, volume ray casting algorithms avoid aliasing by

using reconstruction kernels which increase in size as the integration grid rays diverge,

which satisfies Equation 3.7. This section gives a similar anti-aliasing algorithm for splat-

ting.

As shown in Figure 3.2a, at distancek the ratio of the volume raster sampling fre-

quency� and the integration grid sampling frequency�(d) is one-to-one.k can be calcu-

lated from similar triangles:

k = s
D

p
; (3.8)

wheres is the sample spacing of the volume raster,p is the extent of a pixel, andD is the

distance from the eye point to the screen.

Figure 3.3 gives a “side view” of splatting as implemented by Westover [97, 98, 99], as

well as the anti-aliasing method introduced in this chapter. In Figure 3.3 the y-axis is draw

vertically, the z-axis is drawn horizontally, the x-axis comes out of and goes into the page,

2This is because a portion of the volume raster may not require any filtering (Case 1), and for the portion
that does require filtering (Case 2), if there is a perspective projection then the amount of filtering required
is itself a function ofd.

86

and figures are shown in both eye space(xe; ye; ze) and perspective space(xp; yp; zp). The

top row illustrates standard splatting. As in Figure 3.2,D is the distance of the view

plane from the eye point, andk is calculated from Equation 3.8. For this example a single

row of splats is being rendered, which are equally spaced along theze axis (Figure 3.3a).

Each splat is the same size in eye space. Figure 3.3b shows the same scene in perspective

space. HereDp andkp areD andk expressed inzp coordinates. As expected, because of

the non-linear perspective transformation, the splat spacing is now non-uniform along the

zp axis [96], and the size of the splats decreases with increasing distance from the eye.

The bottom row illustrates the anti-aliasing method. Beforek splats are drawn the

same size in eye space (Figure 3.3c). Beginning atk, splats are scaled so they become

larger with increasing distance from the view plane. This scaling is proportional to the

viewing frustum, and is given in Equation 3.9 below. Figure 3.3d shows what happens in

perspective space. Beforekp the splats are drawn with decreasing sizes according to the

perspective transformation. Beginning atkp, all splats are drawn the same size, so splats

with a zp coordinate greater thankp are the same size as splats with azp coordinate equal

to kp.

Figure 3.4 gives the geometry for scaling splats drawn afterk. If a splat drawn at

distancek has the radiusr1, then the radiusr2 of a splat drawn at distanced > k is the

projection ofr1 along the viewing frustum. This is calculated by similar triangles:

r2 = r1
d

k
: (3.9)

Scaling the splats drawn afterk is not enough to provide anti-aliasing, however. In

addition to scaling, the energy that these splats contribute to the image needs to be the

same as it would be if they had not been scaled. As shown in Figure 3.4, both splat 1 and

splat 2 project to the same sized area on the view plane. Because they are composited

into the view plane in the form of two-dimensional “footprint” filter kernels [98], the

amount of energy the splats contribute to the view plane is proportional to their areas. The

amount of energy per unit area contributed by the splats needs to be the same. This is

accomplished by attenuating the energy of splat 2 according to the ratio of the areas of the

87

D
k

eye
xe±

+ye

-ye

view plane splats

+ze

Dp

kp

xp±

+yp

-yp

view plane

+zp

D
k

eye
xe±

+ye

-ye

view plane

+ze

Dp

kp

xp±

+yp

-yp

view plane

+zp

Eye Space Perspective Space

Standard Splatting

Anti-Aliased Splatting

(a) (b)

(c) (d)

Figure 3.3: A comparison of the standard splatting method (top) with the anti-aliased
method (bottom). (a) The standard splatting method drawn in eye space. (b) The standard
splatting method drawn in perspective space. (c) The anti-aliased splatting method drawn
in eye space. (d) The anti-aliased splatting method drawn in perspective space.

88

k

d

r1

eye
xe±

+ye

+ze

-ye

view plane
r2

splat 1

splat 2

Figure 3.4: The geometry for scaling splats drawn afterk.

splats:

E2 =
A1

A2

E1; (3.10)

whereA1; A2 are the areas of the splats andE1; E2 are some energy measure for the

splats. Examples of energy measures include the volume under the splat kernel or the

alpha channel of the polygon defining the 2D splat footprint.

Assume for now that the filter kernel is a circle for both splats. Then the areas of the

splats areA1 = �r21 andA2 = �r22. By Equation 3.9 we can expressA2 in terms ofr1:

A2 = �

r1
d

k

!2
: (3.11)

Then

E2 =

0
B@ �r21

�
�
r1

d
k

�2
1
CAE1; (3.12)

which can be simplified to

E2 =

k

d

!2
E1: (3.13)

Although here Equation 3.13 has been derived using circular filter kernels, it can

also be derived using any other two-dimensional shape for the kernel, such as an ellipse,

square, rectangle, parallelogram, etc.; these all derive the same equation. Equation 3.13 is

used to attenuate the energy of all splats drawn afterk.

89

eye +ze

k

s

d

q

Figure 3.5: Calculating the integration grid sampling frequency.

3.3.5 Justification for the Method

This section demonstrates that Equation 3.7 holds for the anti-aliasing technique. It begins

by deriving expressions for the two functions in Equation 3.7:�(d) (the integration grid

sampling frequency atd) and ~w(d) (the maximum volume raster frequency atd).

The function�(d) is derived with a similar-triangles argument. Consider Figure 3.5,

whereq is the integration grid spacing at distanced from the eyepoint. By similar triangles

s

k
=

q

d
; (3.14)

which can be written as
1

q
=

1

s
�
k

d
: (3.15)

Now 1=s = �, and1=q is simply�(d), the integration grid sampling frequency atd.

Thus we have

�(d) = � �
k

d
: (3.16)

The function~w(d) can be derived from the scaling property of the Fourier transform

[6]:

f(at)()
����1a
����F

�
1

a
!
�
; (3.17)

where “()” indicates a Fourier transform pair. This shows that widening a function by

the factora in the spatial domain is equivalent to narrowing the function in the frequency

90

domain by the factor1=a. In the anti-aliasing method, the widening for the splat kernels

drawn afterk is given by Equation 3.9:

a =
d

k
: (3.18)

Thus we have

f

d

k
t

!
()

�����kd
�����F

k

d
!

!
; (3.19)

which shows that as the splat kernels are widened byd=k, their frequency components are

narrowed byk=d. Since all the frequencies of the splat kernel are attenuated byk=d, the

maximum frequencyw is attenuated by the same amount, and we have:

~w(d) = w �
k

d
: (3.20)

Now we are ready to show that the technique satisfies Equation 3.7. We start with

Equation 3.6:� � 2w, which implies that the volume raster has sampled the function

above the Nyquist limit. Multiplying both sides byk=d we have

� �
k

d
� 2

w �

k

d

!
; (3.21)

which we can write as:

�(d) � 2 ~w(d): (3.22)

This derivation says that if the volume raster has sampled the function above the

Nyquist limit, the proposed anti-aliasing technique provides enough low-pass filtering

so that aliasing is not introduced when the volume raster is resampled onto the integration

grid.

3.4 Results

Figures 3.6–3.8 show a collection of images obtained from both the standard splatting al-

gorithm and the anti-aliased technique reported in this chapter. For each figure, the image

on the top is rendered without anti-aliasing, while the image on the bottom is rendered

with anti-aliasing.

91

Figure 3.6: Rendered image of a plane with a checkerboard pattern. (upper) Rendered
with standard splatting; the black line is drawn at distancek. (lower) Rendered with
anti-aliased splatting.

Figure 3.6 shows a498� 398� 1 volume consisting of a single sheet, where alternate

10 � 10 squares are colored either red or white to create a checkerboard effect. The

resulting dataset contains 198K splats which are rendered into a260� 150 image. In the

upper image a black line is drawn at the distancek; beyond this line there is more than

one voxel per pixel. As expected, the upper image shows strong aliasing effects, but these

are smoothed out in the lower image.

Figure 3.7 shows a512�512�103 volume containing a terrain dataset acquired from a

satellite photograph and a corresponding height field. The resulting dataset contains 386K

92

splats (this is more than the expected5122 splats because extra splats are required to fill in

the “holes” formed where adjacent splats differ in height). Each column of splats is given

the color of the corresponding pixel from the satellite photograph. The dataset is rendered

into a260 � 179 image. In the upper image a black line is drawn at the distancek. The

upper image shows strong aliasing in the upper half of the image (containing about 90%

of the data); when animated, these regions show strong flickering and strobing effects.

In the lower image these regions have been smoothed out; and although this technique

does not directly address temporal aliasing effects, when animated these regions are free

of flickering and strobing effects.

Figure 3.8 shows a420 � 468 � 62 volume containing a microtubule study acquired

from confocal microscopy. The resulting dataset contains 344K splats which are rendered

into a290� 290 image. Unlike the previous images, which are drawn with a perspective

projection, this image is drawn with an orthographic projection. However, because the

volume has a higher resolution than the image it is still liable to aliasing effects (all of the

splats are drawn beyond the distancek). This is shown in the upper image, which contains

jagged artifacts that shimmer when animated. In the lower image these effects have been

smoothed out; when animated this shimmering effect disappears.

3.5 Summary and Future Work

As this chapter has demonstrated, the proposed anti-aliasing technique prevents the alias-

ing that arises from the reconstruction process when more than one voxel maps into a

pixel. However, this is not the only source of aliasing in volume rendering. If the vol-

ume raster is not sampled above the Nyquist rate (e.g. if Equation 3.6 does not hold)

then the volume samples themselves contain aliasing. This is the case with any volume

dataset with contains a sharp boundary or binary classification — for example, the images

shown in Figure 3.6 contain this type of aliasing. In addition, the choice of a particular

reconstruction kernel always involves a trade-off between aliasing, smoothing, and other

artifacts [64].

93

Figure 3.7: Rendered image of a terrain dataset. (upper) Rendered with standard splatting;
the black line is drawn at distancek. (lower) Rendered with anti-aliased splatting.

94

Figure 3.8: Rendered image of a scientific dataset. (upper) Rendered with standard splat-
ting. (lower) Rendered with anti-aliased splatting.

95

While the general idea of performing anti-aliasing with a source- or texture-space

filter is not new [1], this is the first time such a technique has been applied in the context

of volume rendering. There are at least two areas for extending the technique: graphics

hardware that supports splatting, and texture mapping.

Graphics Hardware that Supports Splatting: In this project there is a mismatch be-

tween the type of rendering algorithm that was written and the available programming

tools. The Silicon Graphics rendering hardware that was used is designed to accelerate

scenes using traditional surface graphics primitives such as polygons and spline surfaces;

it does not contain an optimized splat primitive. To this end, new hardware architectures

which better support operations which are common in volume rendering are needed. Some

possible avenues for future work are:

� Extended bitblt-like operators that can be sub-pixel centered and subsequently com-

posited.

� Hardware support for point rendering using different reconstruction kernels (cubic,

Gaussian, etc.) with common footprints (circular, elliptical, etc.). Potentially this

offers a far more efficient implementation of splatting than hardware texture map-

ping.

� A higher resolution alpha channel to allow for the accurate accumulation of very

transparent splats.

� Splat primitives with automatic size scaling based on their z-depth.

Texture Mapping: This technique can be adapted to perform traditional texture mapping

of surface-based geometric primitives such as polygons and patches. This would provide

an accurate solution to the texture sampling problem — one that is more accurate than

either mip-maps [102] or summed area tables [24].

Recall that traditional texture mapping algorithms transform a pixel (or the anti-alias-

ing filter kernel) from screen into texture space, using the inverse of the viewing transfor-

mation (Figure 3.9). In general, the preimage of a square pixel is an arbitrary quadrilateral

96

mip-map

summed area table

screen space

pixel

polygon

texture space

direct convolution (pixel preimage)

inverse transform
mapping

Figure 3.9: Traditional texture mapping, showing the pixel preimage for direct convolu-
tion, a summed area table, and mip-mapping.

in texture space [44]. As discussed in Section 3.2.2.1 above, direct convolution texture fil-

tering methods integrate the texture map under this quadrilateral, which gives the color

that is applied to the pixel.

While direct convolution methods perform very high-quality texture mapping, they

are very expensive and are seldomly used. There are at least two reasons why direct

convolution methods are so expensive: 1) each pixel must be inverse transformed, and

2) many areas of the texture map must be accessed multiple times. This second point is

illustrated in Figure 3.10, which shows what can happen when two adjacent pixels are

texture mapped. In this example, the preimages of the two pixels overlap in texture space.

This means that the overlapped area must be accessed twice.

Most current texture mapping implementations use either mip-maps or summed area

tables [96]. As shown in Figure 3.9, a summed area table integrates the texture map in the

axis-aligned rectangular bounding box of the pixel preimage, while a mip-map integrates

97

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

screen space

pixels

polygon

texture space

inverse transform
mapping

Figure 3.10: Traditional texture mapping, showing the preimages of two adjacent pixels.

the texture map in the axis-aligned square bounding box. However, this means that both

methods integrate over a larger area than is required, and hence they perform more low-

pass filtering than is actually needed. This results in a texture that is more blurry than

necessary.

The anti-aliasing method discussed in this chapter can easily be modified to perform

texture mapping (Figure 3.11). In this case, every texture sample is mapped according to

the forward viewing transformation and composited into the image plane, using a variably-

sized, attenuated filter kernel similar to the one given for splatting in Section 3.3.4 above.

This has the following advantages for texture mapping:

� The resulting filtering quality is equivalent to high-quality direct convolution meth-

ods, because each pixel only receives the contribution of those texture samples that

lie in the pixel’s preimage. In particular, the filtering would be higher quality than

either mip-mapping or summed area tables.

� The method is less expensive than direct convolution methods, because 1) each tex-

ture sample is forward transformed, which is less expensive than inverse-transform-

ing each pixel, and 2) no texture sample has to be accessed more than once. This

98

texture space

polygon

pixels

screen space
mapping

forward transform

Figure 3.11: Texture mapping with the new method discussed in this chapter.

type ofcoherenttexture access has been used in the REYES rendering architecture

for performance reasons [19].

This is an exciting area for future work.

99

CHAPTER 4

A MOTION BLUR TECHNIQUE FOR
OBJECT-ORDER RENDERING OF DISCRETE

OBJECTS

4.1 Introduction

Any computer-generated animation must deal with the phenomena oftemporal aliasing.

This is a set of visual artifacts that arises because each animated frame is generated with

the equivalent of a camera with an instantaneous shutter. The same set of visual artifacts

are particularly evident in old stop-action movies such as the originalKing Kong. As

given by Joy et al. [47, page 265], the main artifacts of temporal aliasing are:

� aliasing of high-speed motion — the classic backwards spinning wagon wheel in

movies,

� strobing — fast moving objects appear to jump in discrete steps,

� scintillation — small objects appear to blink on and off,

� “crawling ant” effect — apparent motion along the edges of polygons as they slowly

move,

� stretching and shrinking — a slowly moving object just a few pixels wide will ap-

pear to stretch and shrink by one pixel, and

100

� beating — a vertically moving object on an interlaced display will appear to beat in

synchrony with the interlacing.

These effects can be reduced or eliminated by introducingmotion blur into each animated

frame. When filming natural scenes motion blur is introduced automatically: because the

shutter of a film camera is open for a finite amount of time, any objects in motion move

during the length of time the camera shutter is open. This means the projection of the

moving objects on the film is blurred in the direction of motion. This blurring is termed

motion blur. With computer-generated scenes (as well as with stop-motion animation)

the motion blur does not happen naturally, but must be explicitly added to each frame.

This chapter introduces a new technique for adding motion blur to any object-order

technique for rendering discrete objects. The technique is implemented in the context of

splatting.

To put the technique in perspective, Section 4.2 discusses previous work in the area

of motion blur. Section 4.3 describes the new motion-blur technique. This is followed

by Section 4.4, which gives results and discusses the technique, and then by Section 4.5,

which outlines some areas for future work.

4.2 Previous Work

The literature on motion blur can be broken into two broad categories, based on how

the techniques attempt to solve the motion blur problem:analytic methodsanddiscrete

methods. Analytic methods attempt a solution to the problem which is represented at ma-

chine precision, and then directly render the motion-blurred image into the frame buffer.

Discrete methods sample the scene at discrete time intervals and combine the resulting

samples or images to create a composite, motion-blurred image.

4.2.1 Analytic Methods

Continuous Function: Korein and Badler [53] attempt to find continuous functions that

describe the motion of object attributes (e.g. object location, object extent, object color,

object depth, etc.) as a function of time. Because of the complexity of this process, the

101

technique is only defined for disks or polygons, and only linear motion is supported. They

use a modified scanline algorithm which determines what objects are visible at each pixel

at each time. This technique amounts to integrating each object over its path during each

frame.

Frequency Domain: Norton et al. [75] describe a technique for anti-aliasing textures in

both spatial and temporal dimensions. Their technique requires that the texture be approx-

imated in the frequency domain by a Fourier series. This allows the expensive convolution

required for anti-aliasing to be replaced with a cheaper multiplication. This multiplication

is approximated by taking the first few terms of the sinc power series, with additional

terms being clamped to the average value of the sinusoid. They achieve temporal anti-

aliasing by approximating the movement of the projection of each pixel during a frame

with a vector. They then generalize their 2D sampling technique to 3D, and use the mo-

tion vector for the extra dimension. The net result is box filtering to create an anti-aliased

texture in the spatial domain, and box filtering to approximate integrating the object over

its path during each frame.

Post-Process:Potmesil and Chakravarty [82] describe a system where motion-blurred

objects are added to an image as a post-process. A recursive ray-tracing algorithm is

used to render a static scene. Those objects which move during the exposure time of the

image are marked and not rendered into the scene; the resulting image is the scene with

all the moving objects absent. The projection of the moving objects are then integrated

along their parametric motion paths by a convolution which occurs either in the spatial

or frequency domain. Then the moving objects are alpha-channel composited into the

image with a depth-and-time buffer. Because the objects are added as a post-process, the

algorithm cannot correctly handle cases where blurred objects intersect each other.

Max and Lerner [69] describe a similar algorithm with a very efficient implementa-

tion. Objects are placed into groups which do not intersect inz, and rendered into separate

images. Motion blur is achieved by blurring the entire raster in the direction of motion,

using an efficient approach that first skews the image so that the direction of motion is

102

either entirely horizontal or vertical, blurs along this direction, and then unskews the im-

age back to its original orientation. The separate images are then alpha-composited in

back-to-front order. The motion blur is limited to straight translations.

In the same paper Max and Lerner [69] describe a similar algorithm which computes

the exact (not necessarily linear) motion blur for vectors drawn as a chain of linked quadri-

laterals. And in [66], Max shows how to extend the technique of [69] to render polygons

while solving several outstanding problems.

Pixel Filtering: Catmull [10] describes a pixel-independent rendering algorithm. In this

algorithm, shading and texturing are applied as separate processes to all polygons regard-

less of visibility. The polygons are sorted according tox andy extents. Then the algorithm

loops pixel by pixel, and for each pixel determines the visible polygons using z-sorting

and Weiler-Atherton clipping. Spatial anti-aliasing is performed using a weighed Gaus-

sian filter, performed efficiently using the technique of Feibush et al. [28]. Motion blur is

addressed by elongating the circular filter footprint for moving polygons along the direc-

tion of motion, or equivalently by compressing the polygon along the direction of motion

for each pixel which the object passes over. Because this calculation is made separately for

each pixel, the motion blur respects visible surface calculations, and it allows the polygon

vertices to have different motions.

Full Analytic: Grant’s algorithm [37] is a combination of the Catmull [10] and the

Feibush et al. [28] algorithms. It models moving 3-space polygons as stationary 4-space

polyhedra in image space. It uses a scanline extension of Catmull’s algorithm to efficiently

solve the time and visible surface problem at each pixel, utilizing scanline coherence in

both the spatial and temporal domains. It then uses a 3D extension of Feibush et al.’s 2D

algorithm to efficiently filter the resulting 3-space swept polygons using a spherical filter.

The algorithm thus performs exact anti-aliasing computations in both the spatial and time

domains. However, it is cumbersome in that the polygons must be specified in image

space.

103

Particle-Based: Reeves [83] uses motion-blurred particles in his seminal work on par-

ticle systems. Each particle is motion blurred by drawing an anti-aliased line segment

between the particle’s initial position and its position about half-way through the frame.

This simulates what happens with a real motion picture camera, which captures approxi-

mately half the motion that occurs between frames [83].

4.2.2 Discrete Methods

Distributed Super-Sampling: To date the most successful motion blur technique, in

the sense of accurately simulating the widest variety of motion blur phenomena, isdis-

trubuted super-sampling, which was first implemented in the context ofdistributed ray-

tracing [17, 18, 25, 56]. Each ray point samples the rendering integral [51], thereby

approximating the integral with a Monte Carlo technique. Motion blur is achieved by

stochastically distributing the point samples in the time spanned by the frame. This

amounts to integrating the position of the objects across their arc of movement during

each frame. Unlike the other methods reviewed here, distributed ray tracing correctly

calculates motion blur for rotating objects, shading and highlights, shadows, intersecting

objects, and moving objects which occlude or are occluded by non-moving objects. The

drawback is that distributed ray tracing is a very expensive rendering algorithm.

The basic technique is described by Cook et al. [17, 18] and by Dipp´e and Wold [25].

Lee et al. [56] give statistical methods which are used to estimate the number of rays

required to achieve a given quality. Hsiung et al. [46] describe a system for rendering

relativistic effects using a ray-tracer where the speed of each light ray is not infinite.

This algorithm can simulate motion-blur by perturbing the time component of spacetime

events.

The slowness of ray tracing is partially solved by the Reyes architecture [19], which

implements stochastic sampling with a z-buffer and sub-pixel-sized micropolygons.

Reyes implements motion blur by jittering the location of the micropolygons according to

the required motion.

104

Image Accumulation: Korein and Badler [53] describe a technique which is similar to

distributed ray tracing. Multiple images of the entire scene are rendered at time instants

distributed within the time spanned by the frame. The resulting series of images are then

blended together with some filter function. Haeberli and Akeley [39] describe a hardware

implementation of the same algorithm. A hardware z-buffer quickly renders many images

of a scene with pixel centers jittered in both space and time. The hardware quickly sums

each frame into anaccumulation buffer, which attenuates each image according to the

total number of images which are produced. The image accumulation technique shares

most of the advantages of distributed ray tracing, and is much faster.

4.3 The Splatting-Based Motion Blur Algorithm

4.3.1 Motivation

The motion blur method described in this chapter was inspired by an implementation of

the accumulation buffermethod (Haeberli and Akeley [39]). Figure 4.1 demonstrates

this technique. The first row shows a splat sampled at the starting and ending positions

of a frame. In the second row the same splat is sampled at three positions, in the third

row it is sampled at five positions, and in the fourth row it is sampled at nine positions.

The energy of the sampled splats is attenuated according to the total number of samples

taken, and the samples are all summed together in the accumulation buffer. Carrying this

process to the limit of an infinite number of samples is equivalent to integrating the splat

across its motion path during the time frame. This is shown in the last row of Figure 4.1.

While the accumulation buffer technique is general in the sense that it can calculate

the correct motion blur for any geometric object, with splatting every object has the same

simple geometric form: the projection of a splat is a circular or ellipsoidal disk. The

simplicity of this primitive means it is easy to analytically calculate a splat’s motion blur,

as shown in the last row of Figure 4.1. This is the intuition behind the proposed motion-

blur method.

105

Figure 4.1: Motion blur calculated with the accumulation buffer technique.

106

ti

ti-1

ti

ti-1

(a)

(b)

total energy
is equal

Figure 4.2: Drawing a motion-blurred splat from positionti�1 to ti.

4.3.2 Method

The basic idea of the algorithm is as follows. Assume that at each time stept0; t1; t2; : : :

each splat has a certain position in eye space. Let the current time step beti, and assume

that a particular splat has the positions shown in Figure 4.2a forti and the previous time

stepti�1. These positions are calculated inprojected eye space— that is, they ignore the

eye spacez-coordinate.

Given that the splat is rendered at timeti, we want to blur the motion of the splat

between its old position atti�1 and its current position atti. Figure 4.2b shows one way

to do this. Here the splat’s eye space path betweenti andti�1 is connected with a line

which has the same width as the splat’s diameter. Following an argument analogous to

that given in Section 3.3.4, the energy of the motion-blurred splat needs to be the same as

the non-blurred splat. Because the area of the motion blurred splat is larger, this means

the energy per unit area must be attenuated, and so the motion blurred splat is dimmer

than the non-blurred splat.

107

s

splat
profile

ti

titi-1

s

s

s

s

BA C

l

w

(a)

(b)

Figure 4.3: The construction of a non-blurred and a motion-blurred splat. (a) A non-
blurred splat (splat 1). (b) A motion-blurred splat (splat 2).

Figure 4.3 shows how the motion blurred splats are drawn. Figure 4.3a shows a non-

blurred splat (splat 1), while Figure 4.3b shows a motion-blurred splat (splat 2). Splat

1 is drawn at positionti. The splat is radially symmetric, so its footprint is a circle and

its radial profiles follows the splat’s reconstruction kernel (typically a Gaussian or cubic

spline). Splat 2 is drawn between positionsti�1 andti. The original circular footprint is

cut in half and “stretched” betweenti�1 andti. This results in the two half-circlesA and

B, connected by the rectangleC with widthw and lengthl. A andB have the same radial

profiles as splat 1.C has the profiles along every line perpendicular to the bisecting line

ti�1ti. Along every line parallel toti�1ti, C has a constant value.

As discussed in Section 1.2.5, the splat footprint polygons are rotated in eye space so

they are perpendicular to the ray from the eye point to the splat’s position. Figure 4.4

108

eye

ti-1

ti

original
position blurred

position

motion-blurred
splat

Figure 4.4: The motion-blurred splat is drawn perpendicular to the ray from the eye point
to positionti.

shows how this works for the motion-blurred splats. The figure shows a “side view” of

a motion-blurred splat, looking on the edge of the splat polygon. The motion-blurred

splat is perpendicular to the ray passing through the ending positionti. Because of this,

the motion-blurred splat does not precisely line up with the splat drawn at the beginning

positionti�1, but instead is slightly farther from the eye point and is not perpendicular

to the ray passing throughti�1. This error is small except for splats which undergo large

amounts of movement close to the view point.

As discussed above, the motion-blurred splat 2 (Figure 4.3b) contributes the same

amount of energy to the image as the stationary splat 1 (Figure 4.3a). This means the total

energy of splat 2 must be attenuated according to the ratio of the areas of the splats:

E2 =
A1

A2

E1; (4.1)

whereA1; A2 are the areas of the splats andE1; E2 are some energy measure for the

splats. NowA2 = A1 + lw, because splat 2 has the same area as splat 1 plus the area of

the rectangleC. Therefore

E2 =
A1

A1 + lw
E1: (4.2)

This equation is used to attenuate the energy of all motion-blurred splats.

109

Examples of energy measures include the volume under the splat kernel or the alpha

channel of the polygon defining the 2D splat footprint. In the implementation described

in this chapter the alpha channel is used as the measure of splat energy.

As discussed above, splats are motion blurred between their previous positionti�1 and

their current positionti. At time intervalti the projected distance the splat has travelled

betweenti�1 andti is measured. If this distance is greater than some interval�, then the

splat is motion blurred betweenti�1 andti. The distance� is chosen to be small enough so

that if the splat is not moved betweenti�1 andti, or if the motion is completely towards or

away from the eye point (e.g. all of the motion is contained in the eye spacez-coordinate),

then the motion blur is not calculated.

4.4 Results and Discussion

Figure 4.5 gives some results of the new motion-blur method. The figure shows one frame

from an animation of a rotating60�60�60 hollow cube which has been texture-mapped

with alternating red and green10 � 10� 10 sub-cubes. The animation is generated with

an orthographic projection. Figure 4.5a shows the frame with no motion blur. Figure 4.5b

shows the frame with the new motion-blurred splats, while Figure 4.5c shows the new

motion-blurred splats composited with asheet summation buffer(see Section 1.2.2.2 on

page 15). Figure 4.5d shows the frame motion-blurred using theaccumulation buffer

technique described above, with the box’s motion sampled at five sub-positions.

As discussed in Section 4.2 above, to date the most generally successful motion blur

technique isdistributed super-sampling. The accumulation buffer method is a good ap-

proximation to distributed super-sampling, so Figure 4.5d is a good benchmark image for

motion blur.

The primary advantage of the new technique is speed. While generating Figure 4.5b

required rendering the dataset five times, Figures 4.5b and 4.5c only required rendering

the dataset once.

Figure 4.5b compares well to Figure 4.5d except along the edges, where a stretching

artifact is apparent. This artifact illustrates the biggest limitation of the new technique: it

110

(a) (b)

(c) (d)

Figure 4.5: One frame from an animation of a rotating box demonstrating the new motion
blur method. (a) No motion blur. (b) The new motion blur method with composited splats.
(c) The new motion blur method with a sheet summation buffer. (d) Motion blur from the
accumulation buffer method.

111

accentuates thesplat overlap problem. As discussed in Section 1.2.2.1, the splat overlap

problem arises because where splats overlap the last splat drawn hides the previously

drawn splats. Normally this produces fairly small artifacts, as demonstrated in Figure 1.13

on page 20. But because the new technique draws bigger splats with more overlap, the

artifacts become more apparent. This is why the edges of Figure 4.5b appear stretched:

the splats along the edge are overwriting the splats just inside the edge.

One impact of this limitation is that the new motion-blur technique interacts with the

Perspective Back-to-Front (PBTF) visibility ordering given in Chapter 2. The motion-

blur technique magnifies the scanline artifacts shown in Figures 1.13a and 1.13d, which

appear to march along the cube face because the PBTF ordering changes with every frame.

Thus Figure 4.5 is rendered using the Westover Back-to-Front (WBTF) visibility ordering.

Although this eliminates the scanline artifacts, the WBTF ordering itself suffers from the

splat ordering problemdescribed in Section 1.2.2.1 on page 12. Thus using the WBTF

instead of the PBTF visibility ordering trades off an artifact that appears on every frame

for a larger artifact that only appears on some frames.

A solution to this limitation is to use the new motion-blur technique with asummed

sheet buffer. This produces better results: in Figure 4.5c the splats along the edge blend

with the splats just inside the edge, and the stretching artifact is less apparent. Fig-

ure 4.5c compares favorably to Figure 4.5d. This is not a perfect solution, however, since

a summed sheet buffer has other limitations which are discussed in Section 1.2.2.3.

4.5 Summary and Future Work

This chapter has presented a new motion-blur technique for discrete object-order render-

ing algorithms, and has demonstrated the technique with the splatting algorithm. The

technique computes the projected path of each splat during each frame, and draws a splat

elongated in the direction of motion.

The technique suggests new efforts in several areas:

112

� As given the technique approximates each splat’s path with a linear function. It

would be interesting to explore modeling a closer approximation to the splat’s true

path, perhaps fitting it with a parabolic or cubic spline.

� The technique draws each splat with uniform brightness and opacity. Higher-quality

motion blur might result from non-uniform splat attributes, especially along the

length dimension of the splat. For example, greater brightness in the middle of

the splat tapering off towards each end might give a closer approximation to the

accumulation buffer results, where the summed sub-samples tend to be brightest in

the middle of the motion path.

� Finally, it would be interesting to explore different shapes for the splats. Teardrop-

shaped splats might be useful for still images which give a clear, frozen image the

impression of movement.

113

CHAPTER 5

APPLICATIONS TO TERRAIN RENDERING

5.1 Introduction

Rendering terrain data is an important application area in computer graphics. Much early

work in computer graphics was motivated by building flight simulators. This is a very

taxing application, which requires real-time rendering of potentially very large databases.

In addition, terrain rendering is important for geographic information systems and archi-

tectural landscape previewing systems.

One common source for terrain data are fractal algorithms [31, 62], which can proce-

durally generate terrain and other natural scenes. Another common source is actual earth

terrain data obtained from aerial or satellite imagery [13]. The terrain data typically comes

in the form of two datasets: a color or texture image (typically from an aerial or satellite

photograph) and topology or elevation samples. The color dataset is usually at a much

higher resolution than the elevation dataset [2]. These two data sources are registered and

merged [13] to form two arrays: a 2D array of height values, and a 2D array of color

values. Typically the color values have three channels corresponding to red, green, and

blue; but other color channels (such as infrared, ultraviolet, etc.) are possible. These two

arrays are the typical input to a terrain renderer.

Traditionally, terrain data has been modeled as a triangular mesh. This chapter ex-

plores the idea of modeling the terrain as a discrete object in a volume raster. Section 5.2

discusses previous techniques for rendering terrain datasets. Section 5.3 gives a series of

images which demonstrate all the techniques presented in this dissertation.

114

5.2 Previous Work

Like the volume rendering algorithms reviewed in Section 1.1.2, terrain rendering algo-

rithms can be classified according to how the terrain is rendered. This classification groups

the algorithms intoray casting, shear-warp, andobject ordermethods.

5.2.1 Ray Casting

The ray-casting methods typically cast a ray from each pixel and sample the terrain at

the resulting intersection point. Unlike volume ray casting, which samples each ray many

times, terrain ray casting algorithms usually only sample one point per ray. These algo-

rithms typically store the height and color information in grid form; the grids are interpo-

lated at the intersection point. They can be further characterized by how they represent

rays and step through the data structure:

Incremental Techniques: Dungan [27], Coqillart and Gangnet [20], and Musgrave [73]

all trace the 2D projection of the ray across the baseplane of the terrain grid. At each step,

the height of the ray is compared to the height of the terrain data at that step. When the

ray height drops below the terrain, the exact intersection point is found.

Space-Leaping Techniques:Cohen-Or et al. [14] and Lee and Shin [57] use a similar

incremental technique, but accelerate the process by starting the traversal of each ray

above the intersection point of the previous ray.

Hierarchical Techniques: Cohen and Shaked [16] store the height grid at multiple res-

olutions in a quadtree data structure. The ray steps first across the largest quadtree node,

which contains the highest point of the terrain. If the ray height is below this, then the ray

is recursively compared to the heights of the proper quadrants. This continues until the

ray intersects the terrain data at a quadtree leaf node.

Distance Transform Techniques: Paglieroni and Petersen [77, 78] compute a distance

transform of the height grid. This gives an area of empty space around every voxel, where

115

it is guaranteed that the ray will not encounter other voxels. The ray is stepped from a

given voxel to the edge of the voxel’s distance transform.

Because ray casting point-samples the terrain grid, all of these methods are particularly

subject to aliasing artifacts. Many of the above methods perform some anti-aliasing by

storing the terrain grid at multiple levels of resolution; the lower resolution grids are used

for pixels which show areas of the terrain that are far from the view point. This still results

in aliasing artifacts, however. Cohen-Or [15] describes a ray-casting terrain rendering

technique that area-samples the terrain grid, resulting in high-quality terrain images.

5.2.2 Shear-Warp

The shear-warp methods create a perspective projection of the height and color grids

through a series of 1D shearing and warping operations. The data is resampled into a

regular grid which is designed so that all voxels which might occlude a particular voxel

are located in the same row or column. Then a back-to-front traversal along these rows

or columns results in the correct visibility. This is followed by an inverse resampling that

restores the data to a perspective projection. The basic implementation of this technique

is described by Robertson [85]. Another implementation using a spherical projection is

given by Miller [70]. The technique’s advantages are that each 1D pass can be made

quickly, and that the technique is easy to parallelize. Vezina and Robertson [95], Kaba et

al. [48], and Kaba and Peters [49] all describe parallel implementations, some of which

can render 30 frames per second [48, 49]. Robertson [86] also describes how the technique

can be extended to rapidly generate shadows on a terrain surface.

5.2.3 Object Order

Most of the object-order techniques fit polygons or patches to the terrain height field, and

then render these using standard polygon or patch rendering techniques. The terrain color

grid is texture mapped onto the polygons or patches. An example is Coqillart and Gangnet

[20], which fits the surface with bilinear patches. Another is Kaneda et al. [52], which fits

polygons that vary in size in such a way that they sample approximately equal areas of the

terrain when rendered from a perspective projection. This is similar to Geymayer et al.

116

[34], except that the polygons are pre-fit into a pyramid data structure, and thus the terrain

does not have to be resampled with each frame. Kaneda et al. [52] also demonstrates

an advantage of polygon/patch fitting methods: it is easy to include additional polygons

representing buildings or other ground structures.

Agranov and Gotsman [2] describe a hybrid order algorithm. They use ray-casting to

determine the pixels along the screen border; this projects the screen as a polygon onto

the terrain dataset. They then project all the triangles contained in this polygon onto the

screen using a z-buffer.

Wright and Hsieh [105] model the terrain as a set of voxel grids at different resolutions.

The voxels are visited and projected onto the image plane in order of increasing distance

from the image plane; as the distance to the image plane increases voxels from lower

resolutions are used. This ensures that the projected voxels span approximately the same

area of the image plane.

5.3 Terrain Rendering Examples

This section gives examples of the techniques given in this dissertation applied to render-

ing terrain datasets.

Figure 5.1 shows a series of four frames from an animation of a256 � 256 terrain

dataset containing 133K splats. The frames are rendered with a perspective projection,

using the Back-to-Front visibility ordering described in Chapter 2. Figures 5.1a and 5.1b

show a visibility artifact, denoted by arrows, were portions of the dataset behind the left-

hand hill incorrectly show through the hill. Figure 5.1 also demonstrates aliasing, which is

particularly apparent on the hill which rotates towards the top of the dataset in Figures 5.1c

and 5.1d.

Figure 5.2 shows the same frames as Figure 5.1, except that now the dataset is rendered

with the Perspective Back-to-Front (PBTF) visibility ordering given in Chapter 2. Note

that the visibility artifact from Figures 5.1a and 5.1b is gone.

117

(a) (b)

(c) (d)

Figure 5.1: Four frames from a terrain animation with visibility problems denoted by
arrows.

118

(a) (b)

(c) (d)

Figure 5.2: The same animation as Figure 5.1, using the Perspective Back-to-Front visi-
bility ordering from Chapter 2.

119

Figure 5.3 shows the same frames as Figure 5.1, except that now the dataset is rendered

with both the PBTF visibility ordering and the anti-aliasing technique from Chapter 3. The

anti-aliasing is particularly noticeable on the upper hill in Figures 5.3c and 5.3d.

Figure 5.4 shows four frames from another animation of the same dataset, this time

rendered with an orthographic projection and utilizing the Westover Back-to-Front (WB-

TF) visibility ordering described in Chapter 2. Figure 5.5 shows the same frames rendered

using the motion-blur technique of Chapter 4, while Figure 5.6 shows the frames motion-

blurred using theaccumulation buffertechnique (also described in Chapter 4), where the

terrain’s motion is sampled at 5 sub-positions.

As discussed in Section 4.4, these examples utilize the WBTF instead of the PBTF vis-

ibility ordering to avoid the scanline overlapping splat artifact described in Section 1.2.2.1

on page 12. As Chapter 2 discusses, the WBTF does not give the correct visibility forev-

eryperspective viewpoint (although it does give the correct visibility formanyperspective

viewpoints). Therefore the examples given in Figures 5.4, 5.5, and 5.6 use an orthographic

projection.

As discussed in Chapter 4, the accumulation buffer technique generates accurate mo-

tion blur, so it is instructive to compare Figure 5.5 with Figure 5.6. The frames in the

figures compare quite favorably. The primary advantage of the motion-blurred frames

is rendering speed: each image in Figure 5.5 required rendering only one frame, while

each image in Figure 5.6 required rendering five frames. The disadvantages are stretched

splats along the bottom of the dataset in Figures 5.5a and 5.5d (caused by theoverlapping

splat problemand discussed in more detail in Section 4.4), and the squared-off corners in

Figure 5.5b, caused by approximating each splat’s motion vector (which is an arc for the

circular motion shown in Figure 5.5b) with a line segment.

120

(a) (b)

(c) (d)

Figure 5.3: The same animation as Figure 5.1, using the Perspective Back-to-Front visi-
bility ordering from Chapter 2 and the anti-aliasing technique from Chapter 3.

121

(a) (b)

(c) (d)

Figure 5.4: Four frames from a terrain animation rendered with an orthographic projec-
tion.

122

(a) (b)

(c) (d)

Figure 5.5: The same animation as Figure 5.4, using the motion-blur technique of Chap-
ter 4.

123

(a) (b)

(c) (d)

Figure 5.6: The same animation as Figure 5.4, using theaccumulation buffermotion blur
technique.

124

CHAPTER 6

CONTRIBUTIONS AND CONCLUSIONS

This dissertation contributes three new techniques to the science of rendering discrete

objects and volumes. Although these techniques have been presented in the context of the

splatting algorithm, each technique has additional applications that go beyond splatting.

Perspective Back-to-Front Visibility Ordering: Chapter 2 presents the Perspective

Back-to-Front (PBTF) visibility ordering. This is an ordering of a rectilinear grid of

objects which visits the objects in strict visibility order with respect to a viewpoint; it

works for both orthographic and perspective projections. The location of the viewpoint

is unrestricted — it may be located anywhere in space relative to the grid or inside the

grid. Chapter 2 presents a proof of correctness for the technique, based on the idea of

cutting planes. Chapter 2 also demonstrates that two commonly used visibility orderings

for rectilinear grids — the Back-to-Front (BTF) and the Westover Back-to-Front (WBTF)

— do not always give a correct visibility ordering for a perspective projection.

Object-Order Anti-Aliasing Technique: Chapter 3 presents a new anti-aliasing tech-

nique which can be applied when one grid is resampled and projected onto another grid.

The method is different from existing techniques in that the reconstruction kernels have

support in the source grid space, as opposed to the more common technique of support

in the destination grid space. The technique is applied to the splatting algorithm, and

as such it represents the first anti-aliasing technique for splatting. Furthermore, Chap-

ter 3 contains a formal derivation which demonstrates that the technique provides enough

low-pass filtering so thatnoaliasing is introduced during the reconstruction process.

125

Splatting-Based Motion-Blur: Chapter 4 presents a new technique for adding motion

blur to rendered images of discrete datasets. The technique involves integrating the pro-

jection of each discrete data element across the view plane. The technique is given in the

context of splatting. Because splats have a simple projection (a circle or ellipse), it is easy

to analytically calculate the integrated path. The technique is much more efficient than

existing motion-blur techniques such as supersampling.

Applications for Terrain Rendering: Chapter 5 applies these techniques to the applica-

tion area of motion blur. Unlike traditional methods, which model the terrain with trian-

gular surface patches, it represents the terrain by a collection of points. This point-based

representation, in conjunction with the new rendering techniques, provides an innovative,

efficient, and accurate solution to the terrain rendering problem.

126

BIBLIOGRAPHY

[1] Abram, G., Westover, L., and Whitted, T., “Efficient Alias-free Rendering us-
ing Bit-masks and Look-up Tables”,Computer Graphics(proceedings of SIG-
GRAPH), 19(3), July 1985, pp. 53–59.

[2] Agranov, G., and Gotsman, C., “Algorithms for Rendering Realistic Terrain Image
Sequences and their Parallel Implementation”,The Visual Computer, 11, November
1995, pp. 455–464.

[3] Amanatides, J., “Ray Tracing with Cones”,Computer Graphics(proceedings of
SIGGRAPH), 18(3), July 1984, pp. 129–135.

[4] Anderson, D., “Hidden Line Elimination in Projected Grid Surfaces”,ACM Trans-
actions on Graphics, 1(4), October 1982, pp. 274–288.

[5] Aref, W. G., and Samet, H., “An Algorithm for Perspective Viewing of Objects
Represented by Octrees”,Computer Graphics Forum, 14(1), 1995, pp. 59–66.

[6] Bracewell, R. N., The Fourier Transform and Its Applications(2nd edition),
McGraw-Hill, 1978.

[7] Cabral, B., Cam, N., and Foran, J., “Accelerated Volume Rendering and Tomo-
graphic Reconstruction Using Texture Mapping Hardware”, In proceedings of1994
Symposium on Volume Visualization(Washington, D. C., October 17–18), IEEE
Computer Society Press, 1994, pp. 91–98.

[8] Carpenter, L., “The A-Buffer, An Antialised Hidden Surface Method”,Computer
Graphics(proceedings of SIGGRAPH), 18(3), July 1984, pp. 103–108.

[9] Catmull, E., “A Hidden-Surface Algorithm with Anti-Aliasing”,Computer Graph-
ics (proceedings of SIGGRAPH), 12(3), August 1978, pp. 6–11.

[10] Catmull, E., “An Analytic Visible Surface Algorithm for Independent Pixel Pro-
cessing”,Computer Graphics(proceedings of SIGGRAPH), 18(3), July 1984, pp.
109–115.

127

[11] Chen, L., Herman, G. T., Reynolds, R.A. and Udupa, J.K., “Surface Shading in
the Cuberille Environment”,IEEE Computer Graphics and Applications, 5(12),
December 1985, pp. 33–43.

[12] Cline, H. E., Lorensen, W. E., Ludke, S., Crawford, C. R., and Teeter, B. C., “Two
Algorithms for the Three-Dimensional Reconstruction of Tomograms”,Medical
Physics, 15(3), May/June 1988, pp. 320–327.

[13] Cohen, D., and Gotsman, C., “Photorealistic Terrain Imaging and Flight Simula-
tion”, IEEE Computer Graphics and Applications, 14(2), March 1994, pp. 10–12.

[14] Cohen-Or, D., Rich, E., Lerner, U., and Shenkar, V., “A Real-Time Photo-Realistic
Visual Flythrough”,IEEE Transactions on Visualization and Computer Graphics,
2(3), September 1996, pp. 255–265.

[15] Cohen-Or, D., “Exact Antialiasing of Textured Terrain Models”, To be published
in The Visual Computer, 1997.

[16] Cohen, D. and Shaked, A., “Photo-Realistic Imaging of Digital Terrains”, In pro-
ceedings ofEurographics ’93, 1993, pp. 363–373.

[17] Cook, R. L., Porter, T. and Carpenter, L., “Distributed Ray Tracing”,Computer
Graphics(proceedings of SIGGRAPH), 18(3), July 1984, pp. 137–145.

[18] Cook, R. L., “Stochastic Sampling in Computer Graphics”,ACM Transactions on
Graphics, 5(1), January 1986, pp. 51–72.

[19] Cook, R. L., Carpenter, L., and Catmull, E., “The Reyes Image Rendering Archi-
tecture”,Computer Graphics(proceedings of SIGGRAPH), 21(4), July 1987, pp.
95–102.

[20] Coquillart, S. and Gangnet, M., “Shaded Display of Digital Maps”,IEEE Computer
Graphics and Applications, 4(7), July 1984, pp. 35–42.

[21] Crawfis, R. A. and Max, N., “Texture Splats for 3D Scalar and Vector Field Visual-
ization”, In proceedings ofVisualization ’93(San Jose, California, October 25–29),
IEEE Computer Society Press, 1993, pp. 261–266.

[22] Crow, F. C., “The Aliasing Problem in Computer-Generated Shaded Images”,Com-
munications of the ACM, 20(11), November 1977, pp. 799–805.

[23] Crow, F. C., “A Comparison of Antialiasing Techniques”,IEEE Computer Graph-
ics and Applications, 1(1), January 1981, pp. 40–48.

[24] Crow, F. C., “Summed-Area Tables for Texture Mapping”,Computer Graphics
(proceedings of SIGGRAPH), 18(3), July 1984, pp. 207–212.

128

[25] Dippé, M. A. Z. and Wold, E. H., “Antialiasing Through Stochastic Sampling”,
Computer Graphics(proceedings of SIGGRAPH), 19(3), July 1985, pp. 69–78.

[26] Drebin, R. A., Carpenter, L., and Hanrahan, P., “Volume Rendering”,Computer
Graphics(proceedings of SIGGRAPH), 22(4), August 1988, pp. 65–74.

[27] Dungan, W., “A Terrain and Cloud Computer Image Generation Model”,Computer
Graphics(proceedings of SIGGRAPH), 13(3), August 1979, pp. 143–150.

[28] Feibush, E. A., Levoy, M., and Cook, R. L., “Synthetic Texturing Using Digital
Filters”, Computer Graphics(proceedings of SIGGRAPH), 14(3), July 1980, pp.
294–301.

[29] Fiume, E., Fournier, A., and Rudolph, L., “A Parallel Scan Conversion Algorithm
with Anti-Aliasing for a General-Purpose Ultracomputer”,Computer Graphics
(proceedings of SIGGRAPH), 17(3), July 1983, pp. 141–150.

[30] Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F.,Computer Graphics:
Principles and Practice (2nd edition), Addison-Wesley, 1990.

[31] Fournier, A., Fussell, D., and Carpenter, L., “Computer Rendering of Stochastic
Models”,Communications of the ACM, 25(6), June 1982, pp. 371–384.

[32] Frieder, G., Gordon, D., and Reynolds, R. A., “Back-to-Front Display of Voxel-
Based Objects”,IEEE Computer Graphics and Applications, 5(1), January 1985,
pp. 52–60.

[33] Fuchs, H., Kedem, Z. M., and Uselton, S. P., “Optimal Surface Reconstruction
from Planar Contours”,Communications of the ACM, 20(10), October 1977, pp.
693–702.

[34] Geymayer, B., Prantl, M., Muller-Seelich, H., and Tabatabai, B., “Animation of
Landscapes Using Satellite Imagery”, In proceedings ofEurographics ’91, 1991,
pp. 437–446.

[35] Glassner, A., “Adaptive Precision in Texture Mapping”,Computer Graphics(pro-
ceedings of SIGGRAPH), 20(4), August 1986, pp. 297–306.

[36] Glassner, A. S.,Principles of Digital Image Synthesis(in two volumes), Morgan
Kaufmann, 1995.

[37] Grant, C. W., “Integrated Analytic Spatial and Temporal Anti-Aliasing for Poly-
hedra in 4-Space”,Computer Graphics(proceedings of SIGGRAPH), 19(3), July
1985, pp. 79–84.

129

[38] Greene, N., and Heckbert, P. S., “Creating Raster Omnimax Images from Multiple
Perspective Views Using the Elliptical Weighted Average Filter”,IEEE Computer
Graphics and Animation, 6(6), June 1986, pp. 21–27.

[39] Haeberli, P. and Akeley, K., “The Accumulation Buffer: Hardware Support
for High-Quality Rendering”,Computer Graphics(proceedings of SIGGRAPH),
24(4), August 1990, pp. 309–318.

[40] Hanrahan, P., “Three-Pass Affine Transforms for Volume Rendering”,Computer
Graphics, 24(5), November 1990, pp. 71–77.

[41] Heckbert, P. S., and Hanrahan, P., “Beam Tracing Polygonal Objects”,Computer
Graphics(proceedings of SIGGRAPH), 18(3), July 1984, pp. 119–127.

[42] Heckbert, P. S., “Filtering by Repeated Integration”,Computer Graphics(proceed-
ings of SIGGRAPH), 20(4), August 1986, pp. 315–321.

[43] Heckbert, P. S., “Survey of Texture Mapping”,IEEE Computer Graphics and Ap-
plications, 6(11), November 1986, pp. 56–67.

[44] Heckbert, P. S.,Fundamentals of Texture Mapping and Image Warping, Masters
Thesis, Department of Electrical Engineering and Computer Science, The Univer-
sity of California at Berkeley, Technical Report Number UCB/CSD 89/516, June
1989.

[45] Herman, G. T. and Liu, H. K., “Three-Dimensional Display of Human Organs from
Computed Tomograms”,Computer Graphics and Image Processing, 9(1), January
1979, pp. 1–21.

[46] Hsiung, P., and Thibadeau, R. H., and Wu, M., “T-Buffer: Fast Visualization of
Relativistic Effects in Spacetime”,Computer Graphics(1990 Symposium on Inter-
active 3D Graphics), 24(2), March 1990, pp. 83–88.

[47] Joy, K. I., Grant, C. W., Max, N. L., and Hatfield, L.,Tutorial: Computer Graphics:
Image Synthesis, Computer Society Press, Washington, D.C., 1988.

[48] Kaba, J., Matey, J., Stoll, G., Taylor, H., and Hanrahan, P., “Interactive Terrain
Rendering and Volume Visualization on the Princeton Engine”, In proceedings of
Visualization ’92(October 19–23, Boston, MA), IEEE Computer Society Press,
1992, pp. 349–355.

[49] Kaba, J., and Peters, J., “A Pyramid-based Approach to Interactive Terrain Visual-
ization”, In proceedings of1993 Parallel Rendering Symposium(San Jose, Califor-
nia, October 25–26), IEEE Computer Society Press, 1993, pp. 67–70.

130

[50] Kajiya, J. T. and Von Herzen, B. P., “Ray Tracing Volume Densities”,Computer
Graphics(proceedings of SIGGRAPH), 18(3), July 1984, pp. 165–174.

[51] Kajiya, J. T., “The Rendering Equation”,Computer Graphics(proceedings of SIG-
GRAPH), 20(4), August 1986, pp. 143–150.

[52] Kaneda, K., Kato, F., Nakamae, E., Nishita, T., Tanaka, H., and Noguchi, T., “Three
Dimensional Terrain Modeling and Display for Environmental Assessment”,Com-
puter Graphics(proceedings of SIGGRAPH), 23(3), July 1989, pp. 207–214.

[53] Korein, J. and Badler, N., “Temporal Anti-Aliasing in Computer Generated Ani-
mation”, Computer Graphics(proceedings of SIGGRAPH), 17(3), July 1983, pp.
377–388.

[54] Lacroute, P. and Levoy, M., “Fast Volume Rendering Using a Shear-Warp Fac-
torization of the Viewing Transformation”,Computer Graphics(proceedings of
SIGGRAPH), Annual Conference Series, 1994, pp. 451–458.

[55] Laur, D. and Hanrahan, P., “Hierarchical Splatting: A Progressive Refinement
Algorithm for Volume Rendering”,Computer Graphics(proceedings of SIG-
GRAPH), 25(4), July 1991, pp. 285–288.

[56] Lee, M. E., Redner, R. A., and Uselton, S. P., “Statistically Optimized Sampling
for Distributed Ray Tracing”,Computer Graphics(proceedings of SIGGRAPH),
19(3), July 1985, pp. 61–67.

[57] Lee, C., and Shin, Y. G., “An Efficient Ray Tracing Method for Terrain Rendering”,
In proceedings ofPacific Graphics ’95, 1995, pp. 180–193.

[58] Levoy, M., “Display of Surfaces from Volume Data”,IEEE Computer Graphics &
Applications, 8(3), May 1988, pp. 29–37.

[59] Levoy, M. and Whitted, T., “The Use of Points as a Display Primitive”,Technical
Report TR 85–022, The University of North Carolina at Chapel Hill, Department
of Computer Science, 1985.

[60] Lorensen, W. E. and Cline, H. E., “Marching Cubes: A High-Resolution 3D Sur-
face Construction Algorithm”,Computer Graphics(proceedings of SIGGRAPH),
21(4), July 1987, pp. 44–50.

[61] Machiraju, R. and Yagel, R., “Efficient Feed-Forward Volume Rendering Tech-
niques for Vector and Parallel Processors,” In proceedings ofSupercomputing ’93
(November 15–19, Portland, Oregon), IEEE Computer Society Press, 1993, pp.
699–708.

131

[62] Mandelbrot, B. B.,The Fractal Geometry of Nature, Freeman Press, New York,
1983.

[63] Mao, X., “Splatting of Non Rectilinear Volumes Through Stochastic Resampling”,
IEEE Transactions on Visualization and Computer Graphics, 2(2), June 1996, pp.
156–170.

[64] Marschner, S. R. and Lobb, R. J., “An Evaluation of Reconstruction Filters for Vol-
ume Rendering”, In proceedings ofVisualization ’94(Washington, D.C., October
17–21), IEEE Computer Society Press, 1994, pp. 100–107.

[65] Max, N., Hanrahan, P., and Crawfis, R., “Area and Volume Coherence for Effi-
cient Visualization of 3D Scalar Functions”,Computer Graphics, 24(5), November
1990, pp. 27–33.

[66] Max, N., “Polygon-Based Post-Process Motion Blur”,The Visual Computer, 6,
December 1990, pp. 308–314.

[67] Max, N., “Cone-Spheres”,Computer Graphics(proceedings of SIGGRAPH),
24(4), August 1990, pp. 59–62.

[68] Max, N. L., “Sorting for Polyhedron Compositing”, In H. Hagen, H. M¨uller, G.M.,
Nielson (Eds.)Focus on Scientific Visualization, Springer-Verlag, 1993, pp. 259–
268.

[69] Max, N. L., and Lerner, D. M., “A two-and-a-half-D Motion-Blur Algorithm”,
Computer Graphics(proceedings of SIGGRAPH), 19(3), July 1985, pp. 85–93.

[70] Miller, G. S. P., “The Definition and Rendering of Terrain Maps”,Computer Graph-
ics (proceedings of SIGGRAPH), 20(4), August 1986, pp. 39–48.

[71] Möller, T., Machiraju, R., Mueller, K., and Yagel, R., “Classification and Local
Error Estimation of Interpolation and Derivative Filters for Volume Rendering”,
In proceedings of the1996 Symposium on Volume Visualization(San Francisco,
California, October 28–29), IEEE Computer Society Press, 1996, pp. 71–78.

[72] Mueller, K. and Yagel, R., “Fast Perspective Volume Rendering with Splatting by
Utilizing a Ray-Driven Approach”, In proceedings ofVisualization ’96(San Fran-
cisco, California, October 27 – November 1), IEEE Computer Society Press, 1996,
pp. 65–72.

[73] Musgrave, F. K.,Grid Tracing: Fast Ray Tracing for Height Fields, Technical
Report YALEU/DCS/RR-639, Yale University Department of Computer Science
Research, 1988.

132

[74] Newman, W. M., and Sproull, R. F.,Principles of Interactive Computer Graphics
(2nd edition), McGraw-Hill, 1979.

[75] Norton, A., Rockwood, A. P., and Skolmoski, P. T., “Clamping: A Method of
Antialiasing Textured Surfaces by Bandwidth Limiting in Object Space”,Computer
Graphics(proceedings of SIGGRAPH), 16(3), July 1982, pp. 1–8.

[76] Novins, K. L., Sillion, F. X., and Greenberg, D. P., “An Efficient Method for Volume
Rendering using Perspective Projection”,Computer Graphics(Proceedings of the
San Diego Workshop on Volume Visualization), 24(5), November 1990, pp. 95–
102.

[77] Paglieroni, D. W. and Petersen, S. M., “Parametric Height Field Ray Tracing”, In
proceedings ofGraphics Interface ’92, May 1992, pp. 192–200.

[78] Paglieroni, D. W. and Petersen, S. M., “Height Distributional Distance Transform
Methods for Height Field Ray Tracing”,ACM Transactions on Graphics, 13(4),
October 1994, pp. 376–399.

[79] Perny, D., Gangnet, M., and Coueignoux, P., “Perspective Mapping of Planar Tex-
tures”,Computer Graphics, 16(1), May 1982, pp. 70–100.

[80] Pfister, H. and Kaufman, A., “Cube-4 — A Scalable Architecture for Real-Time
Volume Rendering”, In proceedings ofVisualization ‘96(San Francisco, CA, Oc-
tober 27 – November 1), IEEE Computer Society Press, 1996, pp. 47–54.

[81] Porter, T. and Duff, T., “Compositing Digital Images”,Computer Graphics(pro-
ceedings of SIGGRAPH), 18(3), July 1984.

[82] Potmesil, M., and Chakravarty, I., “Modeling Motion Blur in Computer-Generated
Images”,Computer Graphics(proceedings of SIGGRAPH), 17(3), July 1983, pp.
389–399.

[83] Reeves, W. T., “Particle Systems — A Technique for Modeling a Class of Fuzzy
Objects”,Computer Graphics(proceedings of SIGGRAPH), 17(3), July 1983, pp.
359–376. Also appears inACM Transactions on Graphics, 2(2), April 1983.

[84] Reynolds, R. A., Gordon, D., and Chen, L., “A Dynamic Screen Technique for
Shaded Graphics Display of Slice-Represented Objects”,Computer Vision, Graph-
ics, and Image Processing, 38(3), June 1987, pp. 275–298.

[85] Robertson, P. K., “Fast Perspective Views of Images Using One-Dimensional Op-
erations”,IEEE Computer Graphics and Applications, 7(2), February 1987, pp.
47–56.

133

[86] Robertson, P. K., “Spatial Transformations for Rapid Scan-Line Surface Shadow-
ing”, IEEE Computer Graphics and Applications, 9(2), March 1989, pp. 30–38.

[87] Sabella, P., “A Rendering Algorithm for Visualizing 3D Scalar Fields”,Computer
Graphics(proceedings of SIGGRAPH), 22(4), August 1988, pp. 51–58.

[88] Samet, H.,Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS, Addison-Wesley, 1990.

[89] Shirley, P. and Tuchman, A., “A Polygonal Approximation to Direct Scalar Volume
Rendering”,Computer Graphics, 24(5), November 1990, pp. 63–70.

[90] Sobierajski L. M. and Avila R. S., “Hardware Acceleration for Volumetric Ray
Tracing”, In proceedings ofVisualization ’95 (Atlanta, Georgia, October 29 –
November 3), IEEE Computer Society Press, 1995, pp. 27–34.

[91] Sutherland, I. E., Sproull, R. F., and Schumacker, R. A., “A Characterization of Ten
Hidden Surface Algorithms”,ACM Computing Surveys, 6(1), pp. 1–55.

[92] Turkowski, K., “Anti-Aliasing through the Use of Coordinate Transformations”,
ACM Transactions on Graphics, 1(3), July 1982, pp. 215–234.

[93] Tuy, H. K., and Tuy, L. T., “Direct 2-D Display of 3-D Objects”,IEEE Computer
Graphics and Applications, 4(10), November 1984, pp. 29–33.

[94] Upson, C., and Keeler, M., “V-BUFFER: Visible Volume Rendering”,Computer
Graphics(proceedings of SIGGRAPH), 22(4), August 1988, pp. 154–159.

[95] Vezina, G., and Robertson, P. K., “Terrain Perspectives on a Massively Parallel
SIMD Computer”,Scientific Visualization of Physical Phenomena(proceedings of
CG International ’91), 1991, pp. 163–188.

[96] Watt, A. and Watt, M.,Advanced Animation and Rendering Techniques: Theory
and Practice, ACM Press, 1992.

[97] Westover, L. A., “Interactive Volume Rendering”, In proceedings ofVolume Vi-
sualization Workshop(Chapel Hill, N.C., May 18–19), Department of Computer
Science, University of North Carolina, Chapel Hill, N.C., 1989, pp. 9–16.

[98] Westover, L. A., “Footprint Evaluation for Volume Rendering”,Computer Graph-
ics (proceedings of SIGGRAPH), 24(4), August 1990.

[99] Westover, L. A.,SPLATTING: A Parallel, Feed-Forward Volume Rendering Al-
gorithm, Ph.D. Dissertation, Department of Computer Science, The University of
North Carolina at Chapel Hill, 1991.

134

[100] Whitted, T., “An Improved Illumination Model for Shaded Display”,Communica-
tions of the ACM, 23(6), June 1980, pp. 343–349.

[101] Wilhelms, J. and Van Gelder, A., “A Coherent Projection Approach for Direct Vol-
ume Rendering”,Computer Graphics(proceedings of SIGGRAPH), 25(4), July
1991, pp. 275–284.

[102] Williams, L., “Pyramidal Parametrics”,Computer Graphics(proceedings of SIG-
GRAPH), 17(3), July 1983, pp. 1–11.

[103] Williams, P. L., “Visibility Ordering Meshed Polyhedra”,ACM Transactions on
Graphics, 11(2), April 1992, pp. 103–126.

[104] Wolberg, G.,Digital Image Warping, IEEE Computer Society Press, 1990.

[105] Wright, J. R., and Hsieh, J. C. L., “A Voxel-Based, Forward Projection Algorithm
for Rendering Surface and Volumetric Data”, In proceedings ofVisualization ’92
(October 19–23, Boston, MA), IEEE Computer Society Press, 1992, pp. 340–348.

[106] Yagel, R., Ebert, D. S., Scott, J., and Kurzion, Y., “Grouping Volume Renderers for
Enhanced Visualization in Computational Fluid Dynamics”,IEEE Transactions on
Visualization and Computer Graphics, 1(2), July 1995, pp. 117–132.

[107] Yagel, R. and Machiraju, R., “Data-Parallel Volume Rendering Algorithms”,The
Visual Computer, 11(6), June 1995, pp. 319-338.

[108] Yagel, R., and Shi, Z., “Accelerating Volume Animation by Space-Leaping”, In
proceedings ofVisualization ’93(San Jose, California, October 25–29), IEEE Com-
puter Society Press, 1993, pp. 62–69.

135

